
Topological Matter School TMS’18 – San Sebastian (Spain) 31.08.2018

Hands-on Session on Matrix Product States
Matteo Rizzi – Johannes Gutenberg University Mainz

(see also the theoretical lectures by F. Pollmann this morning)
matteo.rizzi@uni-mainz.de frank.pollmann@tum.de

0: Preliminaries

(a) Make sure you have Python installed on your laptop (at best version 2.7.*), and
possibly a visual interface for it, so that you can launch iPython (e.g., Anaconda
provides it). If you have never used python before, no worries, it will be easier
than you imagine: keep only in mind that tabs have a precise meaning, so if you
get an error, you most probably misaligned some lines . . .

(b) Create a folder and copy inside the files you find in the Dropbox of TMS18: in
particular, the file “svd robust.py” provides a patch for some shortcomings of the
native python routine for singular value decomposition. It relies on having some
kind of numerical libraries installed (MKL, LAPACK, BLAS, . . . ) which you
almost certainly have (e.g., if you have MatLab or other programs).

If you get error messages related to this later on, please tell it loud :-)

(c) We fix the following conventions for the labelling of tensors in the program:
- B[is] will be the MPS tensor at site is (within the unit cell), and has axes (i.e.,
indices) [i, a, b] = (physical, left virtual, right virtual);
- S[is] are schmidt values between sites (is, is + 1), and have therefore a single
axis [a] = virtual;
- Hbond[is] is the bond hamiltonian between (is, is + 1) with only physical axes
[i1, i2, j1, j2] = (out left, out right, in left, in right);
- Ubond[is] = exp(−δHbond[is]) will be the (imaginary) time evolution operator of
a bond – just set δ ∈ R+ or δ ∈ iR+ for your scopes;
- O will be an observable, defined on a site or on a bond, therefore having only
physical axes [i, j] = (phys. out, phys. in) or [i1, i2, j1, j2] (as Hbond above);
- W will be the MPO tensor, and has axes [a, b, i, j] = (virtual left, virtual right,
physical out, physical in) – in principle it could also depend on the site, but let
us neglect it for the moment, since we use it only for observables here (and not
to deal with Hamiltonians);

(d) As you might have noticed, most files are only templates with a skeleton of the
needed routines, so we have to build a working code together – yes, “hands-on”!

1



1: Implementing the basic operations & testing them on Ising model

(a) EXERCISE: Open the file “itebd functions template.py” and go to the routine
“update”. Here we want to apply the time-evolution operator U (in its Trotter
form) on two sites of the chain at a time (even/odd links): thus, we need to
contract U together with the MPS tensors B[j] and B[j + 1] (without forgetting
the Schmidt values s[j]) and then perform a SVD to compress the information
again. [If you wonder what it does mean, recall the examples of this morning.]

(b) EXERCISE: Then move to the routines “* expectation value” (*= “site” and
“bond”) to implement the couple of simple contractions needed to measure ob-
servables out of the MPS state. Same in the routine “correlation length”, where
you need to compute the transfer matrix and get its eigenvalues. Now we are
ready to test our algorithm onto a physical model!

(c) Open the iPython notebook “groundstate ising.ipynb” by typing “ipython note-
book” on your shell. If you do not have such a graphical interface installed, then
simply open “groundstate ising.py” with an editor of your choice, and you will
later run it by “./groundstate ising.py” on your shell :-)

(d) Have a look at the general structure of the code: it simply sets the simulation
parameters, define the spin operators and the Ising Hamiltonian, and then perform
a long imaginary time evolution, which exponentially suppresses excited states and
lead towards the ground state wavefunction. Finally, it measures entanglement
entropy and spectrum, local observables and the (slowest) correlation length.

(e) EXERCISE: Pick up a coupling parameter g, say between 0 and 2.
Produce plots showing how fast the energy converges to its exact value as a func-
tion of imaginary time (and of bond dimension χ).
Plot the entanglement spectrum (i.e., the Schmidt values) at some chosen cou-
pling: does it decay exponentially as predicted in the morning lecture? What
happens around g = 1?
Finally plot magnetization, entanglement entropy of the semi-infinite chain, cor-
relation length, etc. as a function of the coupling parameter g.

(f) EXERCISE*: If you were fast with the above, and you feel fit with MPS, then
implement a subroutine that computes explicitly correlation functions of two given
observables at an arbitrary distance.
Moreover, you could also compute the entanglement entropy of a open interval
of a given length `: how is its density matrix related to the transfer matrix you
computed above for obtaining the correlation length?

2



2: A SPT example: Haldane phase in S = 1 chains

Now let us move to something topological, namely take a 1D spin-1 chain undergoing a

bilinear-biquadratic model of the form H = cos(θ)
∑

j
~Sj · ~Sj+1+sin(θ)

∑
j

(
~Sj · ~Sj+1

)2
.

At θ = 0, this is simply the usual Heisenberg antiferromagnetic (AFM) model, while
at θ = arctan(1/3) it provides the paradigmatic exactly solvable AKLT point.

(a) EXERCISE: Repeat what you did for the Ising model before. Now, however,
give a deeper look to the entanglement spectrum for couplings in the region θ ∈
[−π/4, π/4] around the Heisenberg AFM: do you notice any pattern? And outside
this range? Can you relate this to what explained in the morning lecture about
SPT phases?

(b) EXERCISE*: Take the routine about correlation length, where the standard
transfer matrix was computed, and modify it (after having duplicated it!) to
compute the mixed transfer matrix for the operators Ux = exp−iπSx and Uz =
exp−iπSz defining the Z2 × Z2 symmetry protecting this topological phase. As
explained in the lecture, the dominant eigenvectors Vx, Vz are the representation of
the symmetry operators acting on the virtual links. Perform χTr

(
VxVzV

†
x V

†
z

)
to

get the phase factor related to the Z2×Z2 projective representation, as explained
in the lecture this morning.

3: Pumping in the Rice-Mele model

Finally, let us consider the prototypical Rice-Mele model (i.e., the Su-Schrieffer-Heger
model plus staggered chemical potential):

H = t
∑

j

(
c†j,Acj,B + h.c.

)
+ t′

∑
j

(
c†j,Bcj+1,A + h.c.

)
+ u

∑
j

(
c†j,Acj,A − c

†
j,Bcj,B

)
.

Notice that we can represent the fermionic operators with on-site spin matrices, as
long as we are considering only local and nearest-neighbour terms – what should we
instead do for longer range terms?

We want to perform a pumping cycle of the kind t = 1, t′ = t0+cosφ, u = sinφ, where
φ is a parameter going from 0 to 2π, and see whether we can spot the topological regime
of the underlying SSH model (u = 0) by looking at the pumped charge per cycle.

We need to invoke the files “itebd pump.py” and “pump ricemele.py” now.

(a) EXERCISE: First go around the cycle in a quasi-static way, i.e., compute the
ground state for different φ’s starting from a close-by solution (iteratively apply
iTEBD with imaginary time without re-initialising B, s). Use the routine called
“n right” to extract the amount of extra charge present in the right hand side of
the chain (with respect to the uniform average background – ref. in file).

Plot nr as a function of φ for different values of t0, say smaller or greater than 2:
what do you notice? Can you relate it to some theoretical analysis of the model?

(b) EXERCISE: Do the same as above with real-time evolution: what happens if you
are impatient and set a too short total time for the pumping cycle?

(c) EXERCISE*: Now add a interacting term HI = V
∑

j (nj,Anj,B + nj,Bnj+1,A),
and redo all the above: is the topological regime stable? Is there a critical V ?

This is, of course, only a very basic example: if you instead use a model describing a
fractional Chern insulator, as discussed briefly in the lecture, you will be able to see
fractional pumping (i.e., more cycles to pump a single charge).

3


