34 SYMMETRY AND THE SOLID STATE

TarLE 1.3
The 32 point groups
No. | Label Elements
Triclinic
1 1 C, E
2 1 C; E T
Monoclinic
3 2 CZ Es CZ:
4 m C,, Cyy E o,
5 2/m C,p E C,., 1 0o,
Orthorhombic
6 222 DZ E- szs CZya CZ:
7 mm2 Csy E, C;,, 04,0,
8 mmm D,, E, C,,, Cy,, Cs,, Lo, 0y, 0,
Tetragonal
9 4 C, E, Ci,, Ci., Cs,
10 4 S E, S, S5, Cs
11 4/m Can E, Ci., C, Co., I, Sizs 54z 0
12 422 D, E, Ci.. CL., Cy., Cyy, Cayy Capy Ty
13 4mm Cd-r: E’ CI,, C;zs CZzs Txs Uy- Oaas Oap
14 sz Du E, Szz, Sd-.:s C2z9 Clxs CZ}'» Tdasr Tab
15 4fmmm Dy, E, CJ,, Ci, Copy G,y Cays Caa Cap
I, 87, S3.. 0., 0y 0y Guas Ty
Trigonal
16 3 Cs E C;,C3y
17 3 Cy; E,C;,C5, 1, 5S¢, 8¢
18 32 D, E ,Ci,C5,C5, Chy, Chs
19 3m C,, E,C3,C3, 04,042, G43
20 Im D1y E, Cf,C5,Chy, Chy, Cos, I, S5, S5, 0415 Oaz, Ga3
Hexagonal :
21 6 Ce E Ct, Cq,C5,C5,Cy
22 6 (6 E, 57,57,C3,C3, 0y
23 6/m Cen E C C5,C3,C5,Ca 1, S5, 57,5:.,5¢, 04
24 622 Dy E,C¢,Cs,Cq,Cy, Cy, Cyy, Chp, Cha, Gy, Gy, O
25 6mm CGv E- C6+a CO-’C;! C_;_, C2: Ta15 Tazs O43s Tp1s Tp2s Tp3 -«
26 62m D, E, S7,585,C3,C5, 04, Coy, Cagy Co3. Opy, 12, O3
27 6/mmm  Dg, E,C}, Cs,C7,C5,Cy, Chy, Caa, Cha, €34, Caa, Cos
I,.87,57.55, 884 O Gars Gazs Oazs Outs Ouzs Oy
Cubic
28 23 T E, Cz,,,,C;j, Cs;
29 m3 T, E, Cs,, C3;, C3;, 1, 6,,, Sg;, Se;
30 432 (4] E, Cs,. C3;, C3j, Caps Cims Cim
31 43m T, E, Cyp, C;j= C3j, Oups Sims S4+m
32 m3m Ok E‘ CZm! C;j’ C;j! CZP, C;rm’ C;m
Is am: S;jv S;-js odpv S;m! SIM

Notes to Table 1.3
(i) The arbitrary numbers in column 1 are those of Koster, Dimmock, Wheeler, and Statz (1963).
(i1) The labels of the symmetry operations can be identified from Figs. 1.1-1.3;7 = 1, 2, 3,and4;m = x,y.and z;
p=a,b,c,d e andf
(iii) The principal axes have been set in the Oz direction but there are still possible alternative settings for some
of the point groups, for example 32m (D,,) may contain the elements, E, Sz,, Cyz, Sizs 05, 9ys Cap, and €y, 5 some-
times alternatives of this kind are important when one considers the space groups (see Chapter 3).
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TABLE 1.2

Symmetry elements for the seven crystal systems

Triclinic Monoclinic | Orthorhombic | Tetragonal Trigonal Hexagonal Cubic
1 2/m mmm 4/mmm 3Im 6/mmm m3m
() (C2) (D3p) (Dan) (D3a) (D) (o)
E T E I E T E I E. I E T E T
C2zs g2 C2m- T Cdi:v Sf: C.'it5 S; Céi! Sl‘s: Cva UT
Coms O Chi, 04 Ci.Se Ci—. S¢;
CZs! 045 Cl » Op Cfmv Sfm
Cyis Oy Czp= Oap
Cyi, 0y

Notes to Table 1.2
(i) There is an alternative setting for the trigonal system using C; instead of Cj; as a standard setting.
(ii) See Figs. 1.1, 1.2. and 1.3 for the positions of the following axes:
m=x,y,z; s=ab;, i=1,2,3;, j=1,2,3,4, and p=ab,cde,lf.

group 6/mmm (Dg,) by R, R,, ..., R,4; this scheme is very convenient when com-
puters are being used. However, because the well-established notations, while far
from perfect, do carry some meaning (which is not the case for an arbitrary labelling)
we therefore use in this book the Schonflies notation for the actual symmetry opera-
tions of both point groups and space groups, elaborated so that each point-group

X

X

FiGg. 1.1. Symmetry elements: triclinic, monoclinic, orthorhombic, and tetragonal systems. The point groups in

these systems are subgroups of m3m (0,) and so the same notation is used. x, , z form a right-handed set of axes.

The labels of the symmetry operations are placed on the figure in the position to which the letter £ is taken by that
operation.
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ments: trigonal and hexagonal systems. The z-axis is vertically upwards, out of the page.
try operations are placed on the figure in the position to which the letter £ is taken by that
operation.

:nd for their usefulness on a complete identification of the symmetry
and so we shall give some attention to this matter. To identify the
ts for point groups belonging to most crystal systems it is possible
re such as a stereogram, and we do this for the triclinic, monoclinic,
d tetragonal systems in Fig. 1.1 and for the trigonal and hexagonal
2. Two-sided paper models have been used by Schiff (1954) to help
rent non-cubic point groups. However, for the cubic system it is
the symmetry elements from the figure of a cube; this is done in
anti-clockwise rotation of the points of space through 2n/n radians
selled by r on the figure in question. C,, is a clockwise rotation of
e through 2n/n radians about the same axis. E is the identity and 7
1 Table 1.2 the operators that appear in a given system are listed for
crystal systems; in each part of the table there are two columns,
e right-hand column being the product of 7 with the corresponding
t.—hand column. The elements given in this table are those that appear
iate point group is in the standard setting with respect to the x, y,

77777 ) N P . R T S LY TR S SRS § (R . S

so on). This is because S, denotes an anti-clockwise rotation by 2s
reflection in the plane perpendicular to the rotation and hence /
a(C3)" 2 = (S3)"" 2

A final and very important point, which we have mentioned
stressed and that is that when dealing with a point-group operato
preted always as an active operator moving the points of space anc
fixed ; similarly, when dealing with a space-group operator written i
(see section 1.5) it too will be interpreted as active.

3

Fig. 1.3. Symmetry clements: cubic system (Altmann and Bradley 19

In Table 1.3 we identify the symmetry operations that are pres
32 crystallographic point groups. The point groups are arranged
seven crystal systems and all the elements of each point group ar
a point group has a principal axis this axis is set in the Oz directios
the standard setting, but of course many other settings are possib
shown stereograms for the 32 crystallographic point groups; for de
of stereographic projection see, for example, Phillips (1963). In
system the point group that contains the largest number of symm
called the holosymmetric point group of that system.

The multiplication of point-group operations

P R VY o R T B T o W & e nn e Y UG S



TABLE L.5

The group multiplication table for the point group 432 (0)

E Cy Gy G | Ci Gy Ci Ci Ci, CL|Ch G Gy Ci Cyy Cip Ciy Caa| Gy Gy Gy Gy €y Cyp
Cix E Cpe Cyy | Cax Coo Cop Ci, Gy Gy | Chy C3p Ciy Ciy Ciy C3y Ciy Ci| Ch CfL CYf, Gy G Cy
Cy Gy E Co | Coa Cay Cyp Cyp Cyy Ca | C3y Cie €3 Ciy €3, Cy Ciy Ciy| Cin Ci G Ci G CO
Cy: Gy Gy E Cyp Coe Cf Cou Gy CL |Gy Cyy Cyp C3p C33 Ciy Cip Cy| G Gy Chy Gl G4, Ci
Civ Cie Cyp Cy | Gy €3y C3y E Ciy Ci| Cow Ci Cy Cf, Cf, Ci Ci Cy| Ci; Cip Ci Cyy C33 Cy
Ciy G Cf, Cp |C3 Gy Ciy Ciy E Ci | Cu Cii Cox Cop Ci Cy Cy Ci| G5y Ciy Cp Ciy Gy Ci
Cir Cop Gy Ci|Ciy G5y G, C3 Gy E Coe Co Cf, Co Ciy Cip Gy Cop| Cop Gy Ciy C3p Gy Cxy
Cl Ci Cu Gy | E C3y Ci Gy C3p G| Cin Cy Ci Gy Gy, Co Coe Coy| Coy Ciy Cip Gy Chp Cyy
Ciy Cae G5 Cu |C3y E Cia €5 Gy G35y | Coe Cyp Cop Ciy Co €L Ch Gy | €5 Chy Goy Gy Gy Gy
C:z CZa Czu C;z C;Z C;& E C3+l Ci!_S Clz C;y C:J CZe CZ(' Czd Cv2f CI.\ C;r Cz_r Clx C;I C;.ﬁ C:Tz C3+4
Cyi GCaa Gy G| Gy Gy G Cyy Ch Ch| G5y C33 Ciy C3p, E Ciu Gy Co| Gy Gy C;_z Ci Cyu G
Chy Ciy O3y Gy | Chy Cop Cop Gy Gy Ci|Ciy Cip G5 C3y Gy E Cyo Co| Cow Cu Cy G Cf Gy
Cis Cn Chy G| G CF, Cop Cfy Cp Gy | Cy €3y €3y Ciy Gy Gy E Cov| Cop Ciy Gy Cop Ci Gy
Cia Coy Gy Cyn | Chy Gy Cip Gy G Cop | Ciy G G5 Gy Gy G Gy E Cu Cox Coo G Gy Cyy
Cy Cip Ciy Ci | CL Cl G4 Cu Cy Cy | E Cay Cax Cow Gy Cap Cap Can| Gy Gy Cop Cpp Gy Gy
Ci; C3i Ciw Ciy| Cu Cop Ciy Cf, Ci Cyp | Gy E Cipx Gy Ciy (G Coy Ch| Chy Coe Ca Gy G4 Co
Cis Cip G5 Cip| Cy, Gy Gy Gy Co Coy| i Gy E Cyy Ci G5 Chy Ch| G Gy Gy G G Cy
Ciw Ciy C5p C3 | Cy Co Gy Cip Gy Ci| G Gy Gy E Chn Ci G5 Cog| G Coy Gl Gy Gy G4
C. Ci Cg, Cap Cii Cy Gy C3p Gy Gy |CYy Ciy G Gy Cip Ci, Cyp Cy | E Cp. Cis Ciy Gy C3
Cyw Cio Cip Gy |Ch Chy i Cix Cyy Ciy Cyy |Gy €y Ciy Chy Cyp Gy Cip Ch |Gy E ¢y, Ci Gy Gy
G Co Co €4 |Cae Cop C3p Ciy Gy Gy |CL Gy Gy Cow Co Gy G CFL | CH C3, E Cia Gy (O3
Cu Cap Cin Con |Gy G5 Ciy Gy C3y C3 | Ch, Cy Cio Gy Coy €y Cf G |Ciy €5, €3 E Ciy Cy
Cie Ciy Coo €4 |Ch Cop Cf, Ciy Co Ciy |Gy G Ci Gy Gy Gy Cf, Gy | Ciy Ciy Gy Ciy E Cyy
Cap Cos Cax Ci |Gy Ciy Co Gy Ciy €5 |Gy G Cow Cr Cae Coy G Gy | Chy Gy Gy Gy Gy E

INTTITTIATIATI ©
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TasLE 1.6

The group multiplication table for the point group 622 (Dg)

E. GGG G G| G G Ca' G Ch G
¢ @ G GG E | G G G Cn Cao G
;GGG E G| G G Cno G G Gk
G GG E G G| G G Gy Gy CGa G
GG G E GG G| G G CGh G G G
GG E GGG G| G G G G G G
G G Cn Ch G Cn| E GGG GG
G G Cn G Gy Ch| G E GG GG
G Ch Gy G G G| G G B GGG

G CGn Gy G Gy G| GG ¢ B GG
Ch Cu  Ch G G CGn| GG GG B G
Ch Cn G Gy G CGu | GG G GG E

exactly similar array of atoms or molecules to the array that he would see if he were
to view the crystal from any other of these lattice points. Strictly speaking, in order
to obtain complete similarity of the environment of each lattice point it is necessary
that a mathematical lattice be of infinite extent. A real crystal clearly cannot contain
such an infinite lattice but, remembering the actual sizes of atoms, it will be a close
approximation to an infinite lattice. We may illustrate the idea of a lattice with a
2-dimensional example; if the set of points in Fig. 1.6, which are arranged at the

® [ ] o L ] ] L] L ]
L ] [ ] [ [ ] ° [ ] [ ]
° L] [ ] ] ® ® [ ]
[ ] [ ] [ ] ] ® [ ] L
[ ] [ ] [ ] L] ® L] [ ]
° [ ] [ ] ® ] [ ] [ ]

Fi1G. 1.6. The square 2-dimensional Bravais lattice, p.
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10se [ values for which d'(37) is known. In fact, surface
epresentations of the cubic groups have been evaluated
‘But to have base functions up to / = 12 is sufficient for
resent time.

sness, we quote two other theorems concerning the

Wiwi, = 698, Wi. (2.2.6)

wit = Wi %)

adjoint operator in the space V.
'ms are given, for example, by Altmann (1962).

groups

\ point group G with elements R, S,..., and a ma?rix
.. For the generating functions we take the spherical

iire to evaluate W Y"(0, ¢). Using eqn. (2.2.2) we obtain

"0, ¢) = = 2, DIRERY(O, §). (2.3.1)

Gl ReG

we need an expression for RY;"(0, ¢). Now R is either a
t of the inversion, I, with a proper rotation, that is, an
. proper rotation then we find its Euler angles («, f, 7)
RYM(0, ¢) directly by means of eqn. (2.1.3). On the other
«<press R = IQ and use the Euler angles («, f3, y) for the
1g QY"(0, ¢) by means of eqn. (2.1.3); to complete the
-use eqn. (2.1.12) for the transforms of IY}'(0, ¢). This
(—1"if R is an improper rotation.

1) becomes

Z PRD(R) ¥ exp (—ima) Z C,mexp (—iny)

ReG

X d'(B)um Y70, ¢), (2.3.2)

DLlLlc tdDuldillly UIe TesUits 100 dall LOC POINL groups we déal witn one rurther
theoretical problem. This is that the surface harmonics generated by means of eqn.
(2.3.2) for a given row of a given rep, that is for fixed / and ¢, are not necessarily
orthogonal. For practical purposes it is desirable that any two bases for the same
representation should consist of mutually orthogonal functions. All the expansions

given in the tables that follow have been orthogonalized with the help of Theorems
2.2.2 and 2.2.3.

2.4. Symmetry-adapted functions for the crystallographic point groups

In Table 2.2 we give the character tables of the (single-valued) reps of the 32 crystal-
lographic point groups. The reps are labelled in the notation of Mnlliken (1933)
which we shall follow in this book, but the I" labels, given for exaiu.. », Koster,

Dimmock, Wheeler, and Statz (1963), are also included for reference. In Table 2.3
we give the matrices that we use for the degenerate point-group reps. The method of
section 2.3 can be applied to the determination of the surface harmonics for the
cyclic, dihedral, and cubic point groups and these functions are given in Tables 2.4—
2.6, respectively (Altmann 1957, Altmann and Bradley 1963b, Altmann and Cracknell

1965). We give a few examples of the interpretation of these tables of surface har-
monics.

TABLE 2.2

Character tables for the crystallographic point groups
(0 = exp (2mi/3))

1(C,) E

A r, |1

1(C)

(=]
A
o
CRORS
AY

2im=2Q@71(Cy,=C,@C)



SYMMETRY-ADAPTED FUNCTIONS FOR THE POINT GROUPS

mm2 (Cs,) E Cy, o, o,
222 (DZ) E Clz CZy Clx
A, r, A r, 1 1 1 1
B, T, | B, Tyl|1 -1 -1 1
A, T, B, Ty 1 I -1 -1
B, I, B, I, 1 -1 1 -1
mmm =222 ® 1(Dy, = D, ® C)
4(04) E CZ: CI: C;z
a (Sat) E C}.z S4-z S:z
A r, A I, 1 1 1 1
B I, B r, 1 1 -1 -~
'E T, 'E T, 1 -1 —i l
IE T, 2E T, 1 =1 i —i
4m=4@ 1 (Cay = C, ®C)
ey | B¢ G
A r, 1 1 1
'E T, 1 w*
ET, 1 w w*
31=3@1(C;=C@0C)
32(Dy) E ci Cy
3Im (Cs,) E (o "
A, I, A, I, 1 1 1
A, Ty | 4 I, 1 1 -1
E r, | E r, | 2 -1
In=32@1(Dy=D,®C)
6 (Cg) E c: o G c;  Cg
6 (Csp) E S3 c3 Ty Cy S3
A r, A r, 1 1 1 1 1 1
B I, | A" T4 I | I =1 1 -1
E, Te | "B Ty |1 ) w* 1 @ w*
E, T, 2E T, 1 o* o 1 w*  w
‘E, Iy | 'E" Ts |1 -ow w* —1 v —o*
g, I, | E" Ty |1 —o* o -1 w* -

6/m =6®1(Ce, = Cs ® C)

SYMMETRY-ADAPTED FUNCTIONS FOR THE POINT GROUPS

422 (Dy) E Ci: Ci, Ciy Gy G, Cyy
4mm (C,,) B E Cy, Ci o Ty Oda> Tap
42m (D) E Cy, S:ttz Caxr Coy Ogus Tup
A, I A, r, A, I, 1 1 1 1 1
A, r, A, r, A, I, 1 1 I -1 -1
B, I, B, I B, I's I 1 -1 1 -1
B, T,| B, T,|B T,]|1 1 -1 -1 |
E TIs|E Ts|E TI,|2 -2 0 0
Afmmm = 422 @ 1 (Dy, = D, @ C))
622 (D) E ¢ ¢ G Gy Cy
6mm (C,) B E c, Cy Cs oy Oyi
62m (D,,) E Ty Cy S Cy oy
A, I, A, r, A} I, 1 1 1 1 1 1
A, I, A, r, A} I, 1 1 1 | |
B, I, B, I, Af I, I —1 1 —1 I -1
B, I, B, Iy | A5 r, I -1 1 -1 -1 1
E, I's E, I's E Iy 2 2 -1 -1 0 0
E, I's yon I's E" I's 2 =2 -1 1 0 0
6/mmm = 622 @ T (Dgy, = Dy @ C;)
23(T) E Cow  Cy;  Cy
A ry 1 I 1 1
'E r, 1 1 w w*
E I 1 1 w*  w
T r, 3 -1 0 0
myi=2QI1(T,=T® C)
432 (0) E Cii  Cim Cy Ci,
43m (T,) E Caij Com 04 Sfm
Ay I, A, I, 1 1 1 1 1
A, r, A, r, I I | |
E | E r, 2 -1 2 0 0
T, Is | T, rs 3 0 -1 I -1
T, r, T, Iy 3 0 -1 -1 1

m3im =432®1(0,=0@® C)



tes to Table 2.2

(i) The names of the point groups are given in both the international and Schénflies notations. Sometimes two
hree point groups have identical characters; such groups are tabulated together.

(i) For each point group the names of the representations appear in the column headed by the name of the point
up. The standard Mulliken notation for the representations is used (Margenau and Murphy 1956, Mulliken 1933)."
: T notation of Koster, Dimmock, Wheeler, and Statz (1963) is also included for reference, though we shall not
ually use it in this book.

iii) For each point group the names of the operators appear in the row begun by the name of that group. They
to be identified with respect to axes Oxyz by means of Figs. 1.1-1.4 and Tables 1.2-1.6. Note that we have
an the first setting of the International tables for X-ray crystallography (Henry and Lonsdale 1965) for the point
ups of the monoclinic system; the z-axis (being the polar axis) is more appropriate than the y-axis in the study
iarmonic functions.

iv) We have not given the character tables of those groups that are direct products of some other point group
11(C}); the character tables of these direct product groups can be constructed as follows. If a group G’ is given
v direct product of the form G ® T then the reps of G’ fall into pairs; each pair M_ and M, arise out of a single
M of G and the characters of M, and M, obey the following rules. If R" = RI then for all R € G the character
R in M, and M, is equal to the character of R in M; the character of R' in M| is equal to the character of
1 M, but the character of R’ in M, is minus the character of R in M. In the I' notation of Koster, Dimmock,
celer, and Statz (1963),if T = Min G, then T* = M, and '™ = M, in G

v) By using Theorem 1.3.9 one can easily show that all the point-group reps arc of the first kind, except reps with
iplex characters and these are of the third kind.

vi) The Kronecker products of the various reps of each point group and the compatibilities between the reps of
sint group and those of its subgroups are given in the tables of Koster, Dimmock, Wheeler, and Statz (1963).

TABLE 2.3

Matrices for the degenerate representations of the crystallographic point groups

Tetragonal groups

Key: £ A K P

I P R

Group 422(D,)  4mm(Cy) 42m(D,,) Group 422 (Dy) 4mm (Cy,)  42m (D)

Rep E E E Rep E E E

E £ £ £ Cy —K .

Ci, —& —& —€ g, A

Ci, p p 7, - .

Ca: —-p . P . Tap K K
C2.= A . i Oda —K —K
Cyy -1 =] Sk, p
Caa K Saz —P

R A A T T

T

Fh g e

R e T

Irigonal and hexagonal groups

Key: & o f 4 H

P T P I ] I P I B et I

01 3/3 -3/3 -3 0 -1 -3J3 3 3/3
Group 32(D,) 3m(Cy,) 622 (D) 6mm (Cy,) 62m (Dyy)
Rep E E E, E, E, E, E, E,
E & £ [ 3 ¢ 4 & [}
Ce - o« -
Cq . —a Ii] - i . .
Ccy o P a f o f o oa,
Cs i ; B« B BB
C, . —& £ —£ £ . .
C b} Aol R}
Caa Iz poow no—n
23 v v I [N
C3y -1 A

3y —H
23 -y ) . .
Ty A A A A
Tu2 M v M I
Ty3 : v M v v
T4y A -4 A

T4z u — v

Ta3 v - I . .
T g -
Sy -
S3 B B

See key to trigonal and hexagonal groups, above, for the identification of the matrices.

The doubly-degenerate representations, E, of the cubic groups

432(0),Bm (T):  E, Cy, Gy, G, ¢
432(0), 43m (T): Ci1, G5, C33, Ca o
432(0), 83m (T,); G315 Caz, Gy, Gy B
432(0): Ciar Cis, Ciy Coy 1
43m (T,): - Oaws Sazs Sizs O
432 (0): Cixr Cins Capy Cou u
13’" (Td): ng, S;x! Gd{; O y4
432 (0): Cay» Cayr Caes Coe '
43m (T,): Siyr Siys Oaer e



The threefold degenerate representations of the cubic groups

432(0) 43m (T) T, T,
Given a representation of 432 (0) or 43m (T,), the representatives for the operations of these groups that do not
belong to 23 (T), which are listed under the headings 432 (O) and 3m (T,) in the first part of the table, are obtained 0o 1 0 0 -1 0
as follows: take the corresponding matrix from the first part of the table and post-mulliply it with the matrix that i Cia Tgu [ I 0 0 ] [—1 0 0]
appears under the representation chosen at the bottom of the table. 0 0 ~1 0 0 1

‘ ' Note to Table 2.3

23(T), 432 (0) 432(0) - 3n(T) See Note (iv) to Table 2.2 concerning direct product groups. The note applies here with ‘m

A3m (T,) substituted for ‘character’ wherever the word ‘character’ appears.
1 0 0]
E Cpa O 0 1 0
0o 0 1/ TaBLE 2.4
10 0] Surface harmonics for the cyclic groups
Cax Ci: Si. 0 -1 0 |
I 1(C) ! 6(Cyw) !
-1 0 0
Cyy Ci. S 0 1 0 Ay 0 A’ 0
0 0 —1] A, 1 3
- A" 1
-1 0 0 4
C,, Cap T 0-1 0 g 1
0o 0 1] | 5
0 1 0] [ ’E' 1
C Ci Si. 0 0 1 i 2
31 4 4 [ b . 2(Cy) mmod 2 1pe 2
q 3
0o 1 0 A 0 2
E 2
Tor ord Sk [ 0 0 -1 . B I :
-1 0 0l !
0-1 0] |
CJ_.! Cz[ Guy 0 0 1
-1 0 0] 4(Cy) m mod 4
[0 -1 0]
2 A 0
Caa Caa o 0 0 -1 m(Cyy) 1 m mod 4 2
L1 0 0] A 0 0 'E 1
[0 0 1] 1 I ‘E 3
Ci Cay Sa, 1 0 0 A" 2 I
LO 1 0] 1 0
[0 0 —1] a(sy) !
C3, Ci, Sa 1 0 0
LO -1 0] A 0
0 0 —1] 5 i*
Cis Ca. Tae “{l) (]) g 3(Cy) mmod 3 2
i 'E 1
0 0 1] A 0 2
Cyy Cse Tge -1 o 0 'E 1 E 1
0 -1 0] iE 2 2




THE REPRESENTATIONS OF AN INVARIANT SUBGROUP 187

—
~
4/nimm m3

FiG. 4.1. The gen®alogical relations between the point groups. A continuous line indicates that a subgroup is
invariant. (a) international notation. (b) Schénflies notation.



