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Outline of the course

1. Introduction: Symmetries, degeneracies and representations.

2. Irreducible representations as building blocks. Application to molecular
vibrations.

3. Operations with representations: Physical properties and spectra.

4. Spin and double valued representations. Splitting of atomic orbitals in
crystals.

5. Representation theory and electronic bands.



Splitting of p-orbitals in a crystal field (strong spin-orbit)
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From atoms to crystals
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Electron bands in graphene
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First Brillouin zone for graphene




From atoms to crystals

A crystal may be obtained by placing replicas of a
“molecule” at all the points in a Bravais lattice

t = TL16_7J)1 -+ TLQC—L)Q —+ Tlgag - T

where {d; | are linearly independent vectors.
By construction, the crystal is invariant under translations
t: 7> 7F+t, YteT

and the Bravais lattice can be identified with the
translation group ‘T of the crystal.



Honeycomb lattice: two atoms per unit cell




The translation group
Representations of the translation group

The translation group is abelian.

As a consequence, all the IRs are one-dimensional.

One-dimensional unitary matrices are just unimodular

complex numbers = € C, |z| = 1. Each IR can specified
by a k-vector according to

r(f) = e* 7

Note that this respects the translation group structure

— —

T(81)7(t2) = 7(8) + t2)



The translation group
Reciprocal space

Define the reciprocal basis {b;} by

—

EL} y bj — 27‘(’57;]'

Then a vector in reciprocal space (RS) can be written
k= k151 + kzgz + k353

Note that

TE(.E) — ezk-t — 627TZ(TL1]€1—|—TL2]€2—|—TL3]€3)
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The translation group

Reciprocal lattice and first Brillouin zone
The set of vectors
ER = m151 =+ ngz =+ msgs, m; € Z
constitute the reciprocal lattice (RL). Then
oikrt _

627Ti(n1 mi —|—n2m2 —|—n3m3) —

implies

This is usually written as k + kp = k .

Thus we may think of the first Brillouin zone as the set of
non-equivalent IRs of the translation group of the crystal.
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Bloch waves

For 1-electron systems, the symmetry-adapted basis for
an IR of the translation group is a wavefunction such that

—

= (E) (7)) = O(F+ 1) = e ()
This is solved by

() = u()e™
where u is invariant under the translation group
u() =u(Ff+t), VteT

If the multiplicity of 7; is m¢, the energy eigenstates are
obtained by diagonalizing a m; X mz hermitian matrix.
The eigenstates are Bloch wavefunctions.
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From atomic orbitals to Bloch waves

Given an atomic orbital ¢“(7) we can construct Bloch
waves by forming the linear combinations

YU =Y (7 — 7 — ) e

teT

These combinations satisfy
YE(F A1) = e YR (F)
and belong to the 7; IR of the translation group.

Bloch waves with different values of belong to different

IRs of the translation group and can not be coupled by the
hamiltonian.



There is one Bloch wave for each orbital in the primitive
cell. Taking {¥’;} as a basis, the hamiltonian must be
diagonal in &

(W H|WL,) = H® (k)07 7,

Thus if we consider a set {¢“} of N, orbitals per primitive
cell, we will have to diagonalize a k-dependent NV, x N,
matrix. This will yield N, bands

—

Ealk),a=1,..., N,

So far we have just rephrased Bloch’s theorem in group
theory language.
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Orbitals in graphene

Graphene is made of carbon atoms.
The ground configuration for carbon is 15%2s2p.

Valence electrons live in 2s and 2p orbitals. Thus we may
take the following basis of 8 atomic orbitals

{¢i7 ¢119w ) ¢119y7 ¢1192 7¢§7 qblzgw y ¢129y7 ¢129Z}
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Tight binding bands for graphene
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Beyond Bloch's theorem
The symmetries of graphene
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Beyond Bloch's theorem

The symmetries of graphene

Graphene is also invariant under reflections by the
horizontal plane oy, . Including o enlarges the symmetry
group from Cs, (712 elements) to Dg;, (24 elements).

For the problem at hand this is unnecessary. We
can keep to the simpler Cg,as long as we
remember that:

The hamiltonian can not connect orbitals with
different parities under oy, .

(s, pz, py) are even, whereas P is odd underoy, .
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Tight binding bands for graphene
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“Pi-bands” (from pz orbitals)

(s, pz, py) are even, whereas P is odd underoy, .
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Beyond Bloch's theorem
The little group

Given a vector k, the little group G is the set of symmetries
that leave & invariant

Vh e Gy, hk

k

The Bloch waves {w%}transform among themselves
under the action of the little group G .

This defines the small representation 1 of the little
group Gy

The hamiltonian #°(k) must be invariant under the little
group G
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First Brillouin zone for graphene
Little groups
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First Brillouin zone for graphene
A by




First Brillouin zone for graphene
Little groups
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First Brillouin zone for graphene
Little groups

I C@U E 02 03 Cé_ Od, O,

T Cy, E Ovq T(F, K)
K Cgv E CS_ O,

F C@U E CQ 5: é: O_d,,; O'fui

> Clh E Ods Z(Fa M)
M CQU E CQ O'd2 O'fU2

K Cgv E Céz Oy,

T || Cip || E Ov, | T (K, M)
M CQU E CQ O'd2 O'fU2
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The site symmetry group

TAT Y
P (8)=an
@

@ o ®
o e e

The site symmetry group for orbitals in atoms 1 and 2 is
C3y = {E7 C§:,0dz‘}

Atomic orbitals are distorted by the crystal field and their
symmetry may be lowered. For instance, for an s orbital
at atom 1:

Dar:Al:%s%al
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The site symmetry group

) ) )
\T/ JQ\T_/ \T/ s = aq
————— / D—a;+e
) 1 o/ )
T/ ?/ /\AT/ A d — a1 + 2e
_ — 2a1 + ao + 2e
,o\” /.\o /o\‘/ / | + as ’

In what follows we will study the two bands arising from
the p- orbitals for “spinless” electrons. We begin by placing
one p: orbital at each atom in the crystal.

Dl_ — Al(pz) T E(pazapy) — Pz —7 A1
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Bands from pz-orbitals



Bands from pz-orbitals

Next, we exploit the translation invariance of the crystal
by forming two Bloch waves

) — Zgbal(F—Fa—F)eiE'F

teT

where a = 1,2, and ¢, is a (distorted) p- -orbital.

The two Bloch waves (w;, wQ) at a point of the first Brillouin
zone trasform under the Ilttle group G- - The matrices of
the transformations define the 2- dlmensmnal
representation 7.

In order to decompose 7%, we must compute its
character.
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Bands from pz-orbitals

The character can be obtained by using the following
general formula

A
x7(g, k) = Z 0i(9,%)0:(9)x+(9)

where the sum is over the A atoms in the primitive cell,
A=2 In our case.

0;(g)is equal to 7 if the atom / is invariant under g, zero
otherwise.

—

The phase ¢i(g, k) may arise due to the fact that we are
rotating (transforming) Bloch waves that carry phases.

Finally, X~ (9) is the character of the IR of the orbitals. In
our case, x4,(g) =1
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Bands from pz-orbitals

The Gamma point

There are no phases at the Gamma point, and the
general formula reduces to

Ze

XAl

= Ninw(9)

where niny IS the number of atoms invariant under g. This

gives
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Bands from pz-orbitals
The Gamma point

Cev || & Co C35 Cg  0q, Oy,
Using the magic formula gives
Ir =A1+ B =[I'y + 13
622 (D) E C, C;i s Cu Cy
6mm (Cs,) L C, C3 Cs o4 O i
62”’1 (D:HI) E G-h C}i S% Crlf Jl-'f
A4, T, 4, (P) 4 ool 1 11
B, I, | B, ||| 47 Ty | 1 =1 - -
BI F4 Bl r4 _(‘1; r4 1 '_1 ]. ""1 _'I 1
EI rﬁ E: rﬁ Elr Fﬁ 2 2 "'i - ]. 0 D
E, TIy| E ||l B2 1rs| 2 -2 =1 1 0 0
-

6/mmm = 622 ® 1 (Dy, = Dy ® C)
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Bands from pz-orbitals
The K point

In this case we have to use the general formula with x4, =1

XK (g) = Z 0i(g, K)0;(g)

The phases are actually different for the two atoms and
we get

e NN | O | E CF o,

‘ a2---l“-/7 l L1 (91 1 W™ 0 = o 2§i
v e e e [ 1w O
‘ I > a, XK 2 — 1 O
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Bands from pz-orbitals

The K point Ch,, E Cf o,
@191 1 W™ 0
@292 1 W 0
XK 2 —1 0
Iy = K3
32 (D3) L Cy Cy
3m (Cy,) L C{ o4

The fact that A5 is 2-dimensional implies the degeneracy
of the two bands at the K-point.



Bands from pz-orbitals
The M point

Cow || E Co 04, o0y
1 (91 1 0 1 0
L9 92 1 0 1 0

mm2 (C,,) E C,, o, g,
222 (DI} E CI: CI}' Clx

A, (I'y) 4 I, I I I

BI r4 Bﬂ rq_ _‘l - ]. ].

r:l Bi r3
r,|| B, T,

mmm =222 1 (D,, = D, ® C)
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Bands from pz-orbitals
The symmetry lines

We know that the little group G for k on a symmetry line
IS always a subgroup of the little groups for the endpoints.

For instance, the group-subgroup relations for the
T(I', k) line are

I' C@U E OQ Céz Cé: Od. Oy
T Cqp, E Oy
K || Cs, L Cg: Ov

Then we can use subduction to obtain 7+ either from It
or from 1'x.
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Bands from pz-orbitals
The symmetry lines

To proceed from the Gamma point, we have to compare
the character tables for (s, and Cyy,
I Cev | & o,
62m (D) E Ty Cy 8% Cai Oy ) C E O—
ol (N s oY ) Lh vl
S B (A I 'y || 1 1
e oelelellE a2 o0 2 oo ['s 1 -1
E I Elg E I's @ -2 -1 1 0 \.0/
6/mmm = 622 ® 1 (D), = Dy ® C))
Fl — T1
1(C) E I T T Compatibility relations
2(C, E C,,
D ew S 3 7 12

—_
—

A, TH |4 71, | 4
A, F,‘lB r, | A" !

2/m=2®T(C;h=Cz®C;)

Tr =T, + T3 —>

I =17 + 15
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Bands from pz-orbitals

The symmetry lines

The remaining compatibility relations are obtained in the

same way

'y — 14
I's — 15

Ky =T+ 15|

Ir=171+13
Tw = K3
I = My + Mo

F1%21 Ml%Tll
I's — 24 MQ%TQ/
M, = %, Kz — 17 + T |
MQ%EB
Ir =17 + 15
— TEZQZl

T =T + T}
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Bands from pz-orbitals

“Pi-bands” (from pz orbitals)
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