Group theory, representations and their applications in solid state #### Outline of the course - 1. Introduction: Symmetries, degeneracies and representations. - 2. Irreducible representations as building blocks. Application to molecular vibrations. - 3. Operations with representations: Physical properties and spectra. - **4. Spin and double valued representations.** Splitting of atomic orbitals in crystals. - 5. Representation theory and electronic bands. #### Splitting of p-orbitals in a crystal field (strong spin-orbit) ### From atoms to crystals ### Electron bands in graphene E. Kogan, V.U. Nazarov, V.M. Silkin, M. Kaveh, Phys. Rev. B 89, 165430 (2014) ### From atoms to crystals A crystal may be obtained by placing replicas of a "molecule" at all the points in a *Bravais lattice* $$\vec{t} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 \in \mathcal{T}$$ where $\{\vec{a}_i\}$ are linearly independent vectors. By construction, the crystal is invariant under translations $$\vec{t}: \vec{r} \to \vec{r} + \vec{t}, \quad \forall \vec{t} \in \mathcal{T}$$ and the Bravais lattice can be identified with the *translation group T* of the crystal. ### Honeycomb lattice: two atoms per unit cell ### The translation group #### Representations of the translation group The translation group is abelian. As a consequence, all the IRs are one-dimensional. One-dimensional unitary matrices are just *unimodular* complex numbers $z \in \mathbb{C}, \ |z| = 1$. Each IR can specified by a \vec{k} -vector according to $$\tau_{\vec{k}}(\vec{t}\,) = e^{i\vec{k}\cdot\vec{t}}$$ Note that this respects the translation group structure $$\tau(\vec{t}_1)\tau(\vec{t}_2) = \tau(\vec{t}_1 + \vec{t}_2)$$ ### The translation group #### Reciprocal space Define the *reciprocal basis* $\{\vec{b}_i\}$ by $$\vec{a}_i \cdot \vec{b}_j = 2\pi \delta_{ij}$$ Then a vector in reciprocal space (RS) can be written $$\vec{k} = k_1 \vec{b}_1 + k_2 \vec{b}_2 + k_3 \vec{b}_3$$ Note that $$\tau_{\vec{k}}(\vec{t}) = e^{i\vec{k}\cdot\vec{t}} = e^{2\pi i(n_1k_1 + n_2k_2 + n_3k_3)}$$ ### The translation group #### Reciprocal lattice and first Brillouin zone The set of vectors $$\vec{k}_R = m_1 \vec{b}_1 + m_2 \vec{b}_2 + m_3 \vec{b}_3, \quad m_i \in \mathbb{Z}$$ constitute the reciprocal lattice (RL). Then $$e^{i\vec{k}_R \cdot \vec{t}} = e^{2\pi i(n_1 m_1 + n_2 m_2 + n_3 m_3)} = 1$$ implies $$e^{i(\vec{k}+\vec{k}_R)\cdot\vec{t}} = e^{i\vec{k}\cdot\vec{t}} = 1$$ This is usually written as $\vec{k} + \vec{k}_R \equiv \vec{k}$. Thus we may think of the first Brillouin zone as the set of non-equivalent IRs of the translation group of the crystal. #### **Bloch waves** For 1-electron systems, the *symmetry-adapted basis* for an IR of the translation group is a wavefunction such that $$\tau_{\vec{k}}(\vec{t})\,\psi(\vec{r}) = \psi(\vec{r} + \vec{t}) = e^{i\vec{k}\cdot\vec{t}}\,\psi(\vec{r})$$ This is solved by $$\psi(\vec{r}) = u(\vec{r})e^{i\vec{k}\cdot\vec{r}}$$ where u is invariant under the translation group $$u(\vec{r}) = u(\vec{r} + \vec{t}) , \forall \vec{t} \in \mathcal{T}$$ If the multiplicity of $\tau_{\vec{k}}$ is $m_{\vec{k}}$, the energy eigenstates are obtained by diagonalizing a $m_{\vec{k}} \times m_{\vec{k}}$ hermitian matrix. The eigenstates are *Bloch wavefunctions*. #### From atomic orbitals to Bloch waves Given an atomic orbital $\phi^a(\vec{r})$ we can construct Bloch waves by forming the linear combinations $$\psi_{\vec{k}}^{a}(\vec{r}) = \sum_{\vec{t} \in \mathcal{T}} \phi^{a}(\vec{r} - \vec{r}_{a} - \vec{t}) e^{i\vec{k}\cdot\vec{t}}$$ These combinations satisfy $$\psi_{\vec{k}}^a(\vec{r} + \vec{t}) = e^{i\vec{k}\cdot\vec{t}}\psi_{\vec{k}}^a(\vec{r})$$ and belong to the $\tau_{\vec{k}}$ IR of the translation group. Bloch waves with different values of \vec{k} belong to different IRs of the translation group and can not be coupled by the hamiltonian. There is one Bloch wave for each orbital in the primitive cell. Taking $\{\psi_{\vec{k}}^a\}$ as a basis, the hamiltonian must be diagonal in \vec{k} $$\langle \psi_{\vec{k}}^a | \mathcal{H} | \psi_{\vec{k}'}^b \rangle = \mathcal{H}^{ab}(\vec{k}) \delta_{\vec{k}, \vec{k}'}$$ Thus if we consider a set $\{\phi^a\}$ of N_o orbitals per primitive cell, we will have to diagonalize a \vec{k} -dependent $N_o \times N_o$ matrix. This will yield N_o bands $$\mathcal{E}_{\alpha}(\vec{k}), \ \alpha = 1, \dots, N_o$$ So far we have just rephrased Bloch's theorem in group theory language. ### Orbitals in graphene Graphene is made of carbon atoms. The ground configuration for carbon is $1s^22s^22p^2$. Valence electrons live in 2s and 2p orbitals. Thus we may take the following basis of 8 atomic orbitals $$\{\phi_s^1, \phi_{p_x}^1, \phi_{p_y}^1, \phi_{p_z}^1, \phi_s^2, \phi_{p_z}^2, \phi_{p_x}^2, \phi_{p_z}^2, \phi_{p_z}^2\}$$ ## Tight binding bands for graphene ### Beyond Bloch's theorem #### The symmetries of graphene | C_{6v} | $oldsymbol{E}$ | C_2 | C_3^{\pm} | C_6^{\pm} | σ_{di} | σ_{vi} | |----------|----------------|-------|-------------|-------------|---------------|---------------| | | | | | | | | ### Beyond Bloch's theorem #### The symmetries of graphene Graphene is also invariant under reflections by the horizontal plane σ_h . Including σ_h enlarges the symmetry group from C_{6v} (12 elements) to D_{6h} (24 elements). For the problem at hand this is unnecessary. We can keep to the simpler C_{6v} as long as we remember that: The hamiltonian can not connect orbitals with different parities under σ_h . (s, p_x, p_y) are even, whereas p_z is odd under σ_h . ### Tight binding bands for graphene (s, p_x, p_y) are even, whereas p_z is odd under σ_h . ### Beyond Bloch's theorem #### The little group Given a vector \vec{k} , the little group $G_{\vec{k}}$ is the set of symmetries that leave \vec{k} invariant $$\forall h \in G_{\vec{k}} \,, \quad h\vec{k} \equiv \vec{k}$$ The Bloch waves $\{\psi_{\vec{k}}^a\}$ transform among themselves under the action of the *little group* $G_{\vec{k}}$. This defines the *small representation* $T_{\vec{k}}$ of the little group $G_{\vec{k}}$ The hamiltonian $\mathcal{H}^{ab}(\vec{k})$ must be invariant under the little group $G_{\vec{k}}$ #### Little groups $$\vec{a}_i \cdot \vec{b}_j = 2\pi \delta_{ij}$$ #### Little groups $C_{6v} \parallel E \quad C_2 \quad C_3^{\pm} \quad C_6^{\pm} \quad \sigma_{di} \quad \sigma_{vi}$ #### Little groups | Γ | C_{6v} | C_2 | C_3^{\pm} | C_6^{\pm} | σ_{d_i} | σ_{v_i} | |---------------|----------|-------|-------------|-------------|----------------|----------------| | $\mid T \mid$ | C_{1h} | | | | | σ_{v_1} | | $oxed{K}$ | C_{3v} | | C_3^{\pm} | | | σ_{v_i} | $T(\Gamma, K)$ | Γ | C_{6v} | C_2 | C_3^{\pm} | C_6^{\pm} | σ_{d_i} | σ_{v_i} | |----------|--------------------|-------|-------------|-------------|----------------|----------------| | \sum | $\mid C_{1h} \mid$ | | | | σ_{d_2} | | | M | C_{2v} | C_2 | | | σ_{d_2} | σ_{v_2} | $\Sigma(\Gamma, M)$ | $oxed{K}$ | C_{3v} | C_3^{\pm} | | σ_{v_i} | |----------------|--------------------|-------------|----------------|----------------| | $\mid T' \mid$ | $\mid C_{1h} \mid$ | | | σ_{v_2} | | $oxed{M}$ | C_{2v} | C_2 | σ_{d_2} | σ_{v_2} | T'(K,M) ### The site symmetry group The site symmetry group for orbitals in atoms 1 and 2 is $$C_{3v} = \{E, C_3^{\pm}, \sigma_{di}\}$$ Atomic orbitals are distorted by the crystal field and their symmetry may be lowered. For instance, for an s orbital at atom 1: $$D_0^+ = A_1 \Longrightarrow s \to a_1$$ ### The site symmetry group $$s \rightarrow a_1$$ $p \rightarrow a_1 + e$ $d \rightarrow a_1 + 2e$ $f \rightarrow 2a_1 + a_2 + 2e$ In what follows we will study the two bands arising from the p_z orbitals for "spinless" electrons. We begin by placing one p_z orbital at each atom in the crystal. $$D_1^- = A_1(p_z) + E(p_x, p_y) \Longrightarrow p_z \to a_1$$ Next, we exploit the translation invariance of the crystal by forming two Bloch waves $$\psi_{\vec{k}}^{a}(\vec{r}) = \sum_{\vec{t} \in \mathcal{T}} \phi_{a_1}(\vec{r} - \vec{r}_a - \vec{t}) e^{i\vec{k}\cdot\vec{t}}$$ where a=1,2, and ϕ_{a_1} is a (distorted) p_z -orbital. The two Bloch waves $(\psi_{\vec{k}}^1, \psi_{\vec{k}}^2)$ at a point of the first Brillouin zone trasform under the little group $G_{\vec{k}}$. The matrices of the transformations define the 2-dimensional representation $T_{\vec{k}}$. In order to decompose $T_{\vec{k}}$, we must compute its character. The character can be obtained by using the following general formula $$\chi_T(g, \vec{k}) = \sum_{i=1}^A \varphi_i(g, \vec{k}) \theta_i(g) \chi_\tau(g)$$ where the sum is over the A atoms in the primitive cell, A=2 in our case. $\theta_i(g)$ is equal to 1 if the atom i is invariant under g, zero otherwise. The phase $\varphi_i(g, \vec{k})$ may arise due to the fact that we are rotating (transforming) Bloch waves that carry phases. Finally, $\chi_{\tau}(g)$ is the character of the IR of the orbitals. In our case, $\chi_{A_1}(g)=1$ #### The Gamma point There are no phases at the Gamma point, and the general formula reduces to $$\chi_{\Gamma}(g) = \sum_{i=1}^{2} \theta_{i}(g) \chi_{A_{1}}(g) = n_{inv}(g)$$ where n_{inv} is the number of atoms invariant under g. This gives | C_{6v} | $oldsymbol{E}$ | C_2 | C_3^{\pm} | C_6^{\pm} | σ_{d_i} | σ_{v_i} | |-----------------|----------------|-------|-------------|-------------|----------------|----------------| | χ_{Γ} | 2 | 0 | 2 | 0 | 2 | 0 | #### The Gamma point | C_{6v} | $\mid E \mid$ | C_2 | C_3^{\pm} | C_6^{\pm} | σ_{d_i} | σ_{v_i} | |-----------------|---------------|-------|-------------|-------------|----------------|----------------| | χ_{Γ} | 2 | 0 | 2 | 0 | 2 | 0 | #### Using the magic formula gives $$T_{\Gamma} = A_1 + B_2 = \Gamma_1 + \Gamma_3$$ | 622 (| (D_6) | , | | | | E | C_2 | C_3^\pm | C_6^{\pm} | C'_{2i} | C_{2i}'' | |---------------|------------|-------------|------------|-----------|------------|---|------------|-------------|-------------|---------------|---------------| | | | 6 <i>mm</i> | (C_{6n}) | | | E | C_2 | C_3^{\pm} | C_6^{\pm} | σ_{di} | σ_{vi} | | , | | | (00) | 62m | (D_{3h}) | E | σ_h | C_3^{\pm} | S_3^{\pm} | C'_{2i} | σ_{vi} | | A_1 | Γ_1 | A_1 | Γ_1 | A'_1 | Γ_1 | 1 | 1 | 1 | 1 | 1 | 1 | | A_2 | Γ_2 | A_2 | Γ_2 | $A_2^{'}$ | Γ_2 | 1 | 1 | 1 | 1 | -1 | -1 | | B_1^2 | Γ_3 | B_2 | Γ_3 | A_1'' | Γ_3 | 1 | -1^{-1} | 1 | -1 | 1 | -1 | | B_2 | Γ_4 | B_1 | Γ_4 | A_2'' | Γ_4 | 1 | -1 | 1 | -1 | -1 | 1 | | E_2 | Γ_6 | E_2 | Γ_6 | E' | Γ_6 | 2 | 2 | -1 | -1 | 0 | 0 | | $\tilde{E_1}$ | Γ_5 | E_1 | Γ_5 | E'' | Γ_5 | 2 | -2 | -1 | 1 | 0 | 0 | | | | | | | | | | | | | | $$6/mmm = 622 \otimes \overline{1} (D_{6h} = D_6 \otimes C_i)$$ #### The K point In this case we have to use the general formula with $\chi_{A_1} = 1$ $$\chi_K(g) = \sum_{i=1}^2 \varphi_i(g, \vec{K}) \theta_i(g)$$ The phases are actually different for the two atoms and we get | C_{3v} | $oxed{E}$ | C_3^{\pm} | σ_{v_i} | |---------------------|-----------|-------------|----------------| | $\varphi_1\theta_1$ | 1 | ω^* | 0 | | $ arphi_2 heta_2 $ | 1 | ω | 0 | | χ_K | 2 | -1 | 0 | $$\omega = e^{\frac{2\pi i}{3}}$$ #### The K point | C_{3v} | $\mid E \mid$ | C_3^{\pm} | σ_{v_i} | |----------------------|---------------|-------------|----------------| | $\varphi_1\theta_1$ | 1 | ω^* | 0 | | $\varphi_2 \theta_2$ | 1 | ω | 0 | | χ_K | 2 | -1 | 0 | $$T_K = K_3$$ | 32 (| (D_3) | 3m (| (C_{3v}) | E
E | $C_3^\pm \ C_3^\pm$ | C'_{2i} σ_{di} | |-----------------|----------------------------------|---------------------------------------|----------------------------------|--------|---------------------|-------------------------| | A_1 A_2 E | Γ_1 Γ_2 Γ_3 | A ₁
A ₂
E | Γ_1 Γ_2 Γ_3 | 1 1 2 | 1
1
-1 | 1
-1
0 | The fact that K_3 is 2-dimensional implies the *degeneracy* of the two bands at the K-point. #### The M point | C_{2v} | $\mid E \mid$ | C_2 | σ_{d_2} | σ_{v_2} | |---------------------|---------------|-------|----------------|----------------| | $\varphi_1\theta_1$ | 1 | 0 | 1 | 0 | | $ arphi_2 heta_2 $ | 1 | 0 | 1 | 0 | | χ_M | 2 | 0 | 2 | 0 | $$T_M = M_1 + M_2$$ | $mm2 (C_{2v})$ | 222 (D ₂) | E
E | C_{2z} C_{2z} | σ_y C_{2y} | σ_x C_{2x} | |---|---|------------------|--------------------|---------------------|---------------------| | $ \begin{array}{ccc} A_1 & & \Gamma_1 \\ B_2 & & \Gamma_4 \\ A_2 & & \Gamma_3 \\ B_1 & & \Gamma_2 \end{array} $ | A Γ_1 B_3 Γ_4 B_1 Γ_3 B_2 Γ_2 | 1
1
1
1 | 1
-1
1
-1 | 1
-1
-1
1 | 1
1
-1
-1 | $mmm = 222 \otimes \overline{1} (D_{2h} = D_2 \otimes C_i)$ #### The symmetry lines We know that the little group $G_{\vec{k}}$ for \vec{k} on a symmetry line is always a subgroup of the little groups for the endpoints. For instance, the group-subgroup relations for the $T(\Gamma, k)$ line are | Γ | C_{6v} | $\mid E \mid$ | C_2 | C_3^{\pm} | C_6^{\pm} | σ_{d_i} | σ_{v_i} | |---------------|----------|---------------|-------|-------------|-------------|----------------|----------------| | $\mid T \mid$ | C_{1h} | $\mid E \mid$ | | | | | σ_{v_1} | | $oxed{K}$ | C_{3v} | $\mid E \mid$ | | C_3^{\pm} | | | σ_{v_i} | Then we can use subduction to obtain T_T either from T_{Γ} or from T_K . #### The symmetry lines To proceed from the Gamma point, we have to compare the character tables for C_{6v} and C_{1h} | 622 (D ₆) | 6mm (C _{6v}) | 62m (D _{3h}) | E
E
E | C_2 C_2 σ_h | $C_3^{\pm} \ C_3^{\pm} \ C_3^{\pm}$ | $C_{6}^{\pm} \ C_{6}^{\pm} \ S_{3}^{\pm}$ | C'_{2i} σ_{di} C'_{2i} | $C_{2i}^{"}$ σ_{vi} σ_{vi} | |--|---|--|----------------------------|-------------------------------|-------------------------------------|---|---|--| | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | A_1 A_2 B_2 C_3 C_4 C_4 C_5 C_5 | A'_{1} Γ_{1} A'_{2} Γ_{2} A''_{1} Γ_{3} A''_{2} Γ_{4} E' Γ_{6} E'' Γ_{5} | 1
1
1
1
2
2 | 1
1
-1
-1
2
-2 | 1
1
1
1
-1 | 1
1
-1
-1
-1 | $ \begin{array}{cccc} & 1 & \\ & -1 & \\ & 1 & \\ & -1 & \\ & 0 & \\ & 0 & \\ \end{array} $ | 1
-1
-1
1
0
0 | | C_{6v} | $oldsymbol{E}$ | σ_{v_i} | |----------------|----------------|----------------| | $oxed{C_{1h}}$ | $\mid E \mid$ | σ_{v_1} | | Γ_1 | 1 | 1 | | Γ_3 | 1 | -1 | $$6/mmm = 622 \otimes \overline{1} (D_{6h} = D_6 \otimes C_i)$$ | 1 | $\bar{1}(C_i)$ | | C_2) | | | E
E | I
C2- | |-----------------------|----------------|---|------------------|----|------------------------|--------|------------| | | | | 2 (02) | | $m\left(C_{1h}\right)$ | | σ_z | | $A_{\mathfrak{g}}$ | Γ_1^+ | A | Γ_1 | A' | Γ_1 | 1 | 1 | | <i>A</i> _u | Γ_1^- | В | $\Gamma_{2_{i}}$ | Α" | Γ_2 | 1 | -1 | $2/m = 2 \otimes \overline{1} (C_{2h} = C_2 \otimes C_i)$ $$\Gamma_1 \to T_1$$ $\Gamma_3 \to T_2$ #### **Compatibility relations** $$T_{\Gamma} = \Gamma_1 + \Gamma_3 \longrightarrow T_T = T_1 + T_2$$ #### The symmetry lines The remaining compatibility relations are obtained in the same way $$\Gamma_1 o T_1$$ $\Gamma_3 o T_2$ $$K_3 \rightarrow T_1 + T_2$$ $$\Gamma_1 o \Sigma_1$$ $\Gamma_3 o \Sigma_1$ $$\Gamma_3 \to \Sigma_1$$ $$M_1 \to \Sigma_1$$ $$M_2 \to \Sigma_1$$ $$M_1 \rightarrow T_1'$$ $$M_2 \rightarrow T_2'$$ $$K_3 \rightarrow T_1' + T_2'$$ $$T_{\Gamma} = \Gamma_1 + \Gamma_3$$ $T_K = K_3$ $T_M = M_1 + M_2$ $$T_T = T_1 + T_2$$ $$T_{\Sigma} = 2\Sigma_1$$ $$T_T = T_1 + T_2$$ $T_{\Sigma} = 2\Sigma_1$ $T_{T'} = T'_1 + T'_2$ "Pi-bands" (from pz orbitals)