Group theory, representations and their applications in solid state

Outline of the course

- 1. Introduction: Symmetries, degeneracies and representations.
- 2. Irreducible representations as building blocks. Application to molecular vibrations.
- 3. Operations with representations: Physical properties and spectra.
- **4. Spin and double valued representations.** Splitting of atomic orbitals in crystals.
- 5. Representation theory and electronic bands.

Splitting of p-orbitals in a crystal field (strong spin-orbit)

From atoms to crystals

Electron bands in graphene

E. Kogan, V.U. Nazarov, V.M. Silkin, M. Kaveh, Phys. Rev. B 89, 165430 (2014)

From atoms to crystals

A crystal may be obtained by placing replicas of a "molecule" at all the points in a *Bravais lattice*

$$\vec{t} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 \in \mathcal{T}$$

where $\{\vec{a}_i\}$ are linearly independent vectors.

By construction, the crystal is invariant under translations

$$\vec{t}: \vec{r} \to \vec{r} + \vec{t}, \quad \forall \vec{t} \in \mathcal{T}$$

and the Bravais lattice can be identified with the *translation group T* of the crystal.

Honeycomb lattice: two atoms per unit cell

The translation group

Representations of the translation group

The translation group is abelian.

As a consequence, all the IRs are one-dimensional.

One-dimensional unitary matrices are just *unimodular* complex numbers $z \in \mathbb{C}, \ |z| = 1$. Each IR can specified by a \vec{k} -vector according to

$$\tau_{\vec{k}}(\vec{t}\,) = e^{i\vec{k}\cdot\vec{t}}$$

Note that this respects the translation group structure

$$\tau(\vec{t}_1)\tau(\vec{t}_2) = \tau(\vec{t}_1 + \vec{t}_2)$$

The translation group

Reciprocal space

Define the *reciprocal basis* $\{\vec{b}_i\}$ by

$$\vec{a}_i \cdot \vec{b}_j = 2\pi \delta_{ij}$$

Then a vector in reciprocal space (RS) can be written

$$\vec{k} = k_1 \vec{b}_1 + k_2 \vec{b}_2 + k_3 \vec{b}_3$$

Note that

$$\tau_{\vec{k}}(\vec{t}) = e^{i\vec{k}\cdot\vec{t}} = e^{2\pi i(n_1k_1 + n_2k_2 + n_3k_3)}$$

The translation group

Reciprocal lattice and first Brillouin zone

The set of vectors

$$\vec{k}_R = m_1 \vec{b}_1 + m_2 \vec{b}_2 + m_3 \vec{b}_3, \quad m_i \in \mathbb{Z}$$

constitute the reciprocal lattice (RL). Then

$$e^{i\vec{k}_R \cdot \vec{t}} = e^{2\pi i(n_1 m_1 + n_2 m_2 + n_3 m_3)} = 1$$

implies

$$e^{i(\vec{k}+\vec{k}_R)\cdot\vec{t}} = e^{i\vec{k}\cdot\vec{t}} = 1$$

This is usually written as $\vec{k} + \vec{k}_R \equiv \vec{k}$.

Thus we may think of the first Brillouin zone as the set of non-equivalent IRs of the translation group of the crystal.

Bloch waves

For 1-electron systems, the *symmetry-adapted basis* for an IR of the translation group is a wavefunction such that

$$\tau_{\vec{k}}(\vec{t})\,\psi(\vec{r}) = \psi(\vec{r} + \vec{t}) = e^{i\vec{k}\cdot\vec{t}}\,\psi(\vec{r})$$

This is solved by

$$\psi(\vec{r}) = u(\vec{r})e^{i\vec{k}\cdot\vec{r}}$$

where u is invariant under the translation group

$$u(\vec{r}) = u(\vec{r} + \vec{t}) , \forall \vec{t} \in \mathcal{T}$$

If the multiplicity of $\tau_{\vec{k}}$ is $m_{\vec{k}}$, the energy eigenstates are obtained by diagonalizing a $m_{\vec{k}} \times m_{\vec{k}}$ hermitian matrix. The eigenstates are *Bloch wavefunctions*.

From atomic orbitals to Bloch waves

Given an atomic orbital $\phi^a(\vec{r})$ we can construct Bloch waves by forming the linear combinations

$$\psi_{\vec{k}}^{a}(\vec{r}) = \sum_{\vec{t} \in \mathcal{T}} \phi^{a}(\vec{r} - \vec{r}_{a} - \vec{t}) e^{i\vec{k}\cdot\vec{t}}$$

These combinations satisfy

$$\psi_{\vec{k}}^a(\vec{r} + \vec{t}) = e^{i\vec{k}\cdot\vec{t}}\psi_{\vec{k}}^a(\vec{r})$$

and belong to the $\tau_{\vec{k}}$ IR of the translation group.

Bloch waves with different values of \vec{k} belong to different IRs of the translation group and can not be coupled by the hamiltonian.

There is one Bloch wave for each orbital in the primitive cell. Taking $\{\psi_{\vec{k}}^a\}$ as a basis, the hamiltonian must be diagonal in \vec{k}

$$\langle \psi_{\vec{k}}^a | \mathcal{H} | \psi_{\vec{k}'}^b \rangle = \mathcal{H}^{ab}(\vec{k}) \delta_{\vec{k}, \vec{k}'}$$

Thus if we consider a set $\{\phi^a\}$ of N_o orbitals per primitive cell, we will have to diagonalize a \vec{k} -dependent $N_o \times N_o$ matrix. This will yield N_o bands

$$\mathcal{E}_{\alpha}(\vec{k}), \ \alpha = 1, \dots, N_o$$

So far we have just rephrased Bloch's theorem in group theory language.

Orbitals in graphene

Graphene is made of carbon atoms.

The ground configuration for carbon is $1s^22s^22p^2$.

Valence electrons live in 2s and 2p orbitals. Thus we may take the following basis of 8 atomic orbitals

$$\{\phi_s^1, \phi_{p_x}^1, \phi_{p_y}^1, \phi_{p_z}^1, \phi_s^2, \phi_{p_z}^2, \phi_{p_x}^2, \phi_{p_z}^2, \phi_{p_z}^2\}$$

Tight binding bands for graphene

Beyond Bloch's theorem

The symmetries of graphene

C_{6v}	$oldsymbol{E}$	C_2	C_3^{\pm}	C_6^{\pm}	σ_{di}	σ_{vi}

Beyond Bloch's theorem

The symmetries of graphene

Graphene is also invariant under reflections by the horizontal plane σ_h . Including σ_h enlarges the symmetry group from C_{6v} (12 elements) to D_{6h} (24 elements).

For the problem at hand this is unnecessary. We can keep to the simpler C_{6v} as long as we remember that:

The hamiltonian can not connect orbitals with different parities under σ_h .

 (s, p_x, p_y) are even, whereas p_z is odd under σ_h .

Tight binding bands for graphene

 (s, p_x, p_y) are even, whereas p_z is odd under σ_h .

Beyond Bloch's theorem

The little group

Given a vector \vec{k} , the little group $G_{\vec{k}}$ is the set of symmetries that leave \vec{k} invariant

$$\forall h \in G_{\vec{k}} \,, \quad h\vec{k} \equiv \vec{k}$$

The Bloch waves $\{\psi_{\vec{k}}^a\}$ transform among themselves under the action of the *little group* $G_{\vec{k}}$.

This defines the *small representation* $T_{\vec{k}}$ of the little group $G_{\vec{k}}$

The hamiltonian $\mathcal{H}^{ab}(\vec{k})$ must be invariant under the little group $G_{\vec{k}}$

Little groups

$$\vec{a}_i \cdot \vec{b}_j = 2\pi \delta_{ij}$$

Little groups

 $C_{6v} \parallel E \quad C_2 \quad C_3^{\pm} \quad C_6^{\pm} \quad \sigma_{di} \quad \sigma_{vi}$

Little groups

Γ	C_{6v}	C_2	C_3^{\pm}	C_6^{\pm}	σ_{d_i}	σ_{v_i}
$\mid T \mid$	C_{1h}					σ_{v_1}
$oxed{K}$	C_{3v}		C_3^{\pm}			σ_{v_i}

 $T(\Gamma, K)$

Γ	C_{6v}	C_2	C_3^{\pm}	C_6^{\pm}	σ_{d_i}	σ_{v_i}
\sum	$\mid C_{1h} \mid$				σ_{d_2}	
M	C_{2v}	C_2			σ_{d_2}	σ_{v_2}

 $\Sigma(\Gamma, M)$

$oxed{K}$	C_{3v}	C_3^{\pm}		σ_{v_i}
$\mid T' \mid$	$\mid C_{1h} \mid$			σ_{v_2}
$oxed{M}$	C_{2v}	C_2	σ_{d_2}	σ_{v_2}

T'(K,M)

The site symmetry group

The site symmetry group for orbitals in atoms 1 and 2 is

$$C_{3v} = \{E, C_3^{\pm}, \sigma_{di}\}$$

Atomic orbitals are distorted by the crystal field and their symmetry may be lowered. For instance, for an s orbital at atom 1:

$$D_0^+ = A_1 \Longrightarrow s \to a_1$$

The site symmetry group

$$s \rightarrow a_1$$

 $p \rightarrow a_1 + e$
 $d \rightarrow a_1 + 2e$
 $f \rightarrow 2a_1 + a_2 + 2e$

In what follows we will study the two bands arising from the p_z orbitals for "spinless" electrons. We begin by placing one p_z orbital at each atom in the crystal.

$$D_1^- = A_1(p_z) + E(p_x, p_y) \Longrightarrow p_z \to a_1$$

Next, we exploit the translation invariance of the crystal by forming two Bloch waves

$$\psi_{\vec{k}}^{a}(\vec{r}) = \sum_{\vec{t} \in \mathcal{T}} \phi_{a_1}(\vec{r} - \vec{r}_a - \vec{t}) e^{i\vec{k}\cdot\vec{t}}$$

where a=1,2, and ϕ_{a_1} is a (distorted) p_z -orbital.

The two Bloch waves $(\psi_{\vec{k}}^1, \psi_{\vec{k}}^2)$ at a point of the first Brillouin zone trasform under the little group $G_{\vec{k}}$. The matrices of the transformations define the 2-dimensional representation $T_{\vec{k}}$.

In order to decompose $T_{\vec{k}}$, we must compute its character.

The character can be obtained by using the following general formula

$$\chi_T(g, \vec{k}) = \sum_{i=1}^A \varphi_i(g, \vec{k}) \theta_i(g) \chi_\tau(g)$$

where the sum is over the A atoms in the primitive cell, A=2 in our case.

 $\theta_i(g)$ is equal to 1 if the atom i is invariant under g, zero otherwise.

The phase $\varphi_i(g, \vec{k})$ may arise due to the fact that we are rotating (transforming) Bloch waves that carry phases.

Finally, $\chi_{\tau}(g)$ is the character of the IR of the orbitals. In our case, $\chi_{A_1}(g)=1$

The Gamma point

There are no phases at the Gamma point, and the general formula reduces to

$$\chi_{\Gamma}(g) = \sum_{i=1}^{2} \theta_{i}(g) \chi_{A_{1}}(g) = n_{inv}(g)$$

where n_{inv} is the number of atoms invariant under g. This gives

C_{6v}	$oldsymbol{E}$	C_2	C_3^{\pm}	C_6^{\pm}	σ_{d_i}	σ_{v_i}
χ_{Γ}	2	0	2	0	2	0

The Gamma point

C_{6v}	$\mid E \mid$	C_2	C_3^{\pm}	C_6^{\pm}	σ_{d_i}	σ_{v_i}
χ_{Γ}	2	0	2	0	2	0

Using the magic formula gives

$$T_{\Gamma} = A_1 + B_2 = \Gamma_1 + \Gamma_3$$

622 ((D_6)	,				E	C_2	C_3^\pm	C_6^{\pm}	C'_{2i}	C_{2i}''
		6 <i>mm</i>	(C_{6n})			E	C_2	C_3^{\pm}	C_6^{\pm}	σ_{di}	σ_{vi}
,			(00)	62m	(D_{3h})	E	σ_h	C_3^{\pm}	S_3^{\pm}	C'_{2i}	σ_{vi}
A_1	Γ_1	A_1	Γ_1	A'_1	Γ_1	1	1	1	1	1	1
A_2	Γ_2	A_2	Γ_2	$A_2^{'}$	Γ_2	1	1	1	1	-1	-1
B_1^2	Γ_3	B_2	Γ_3	A_1''	Γ_3	1	-1^{-1}	1	-1	1	-1
B_2	Γ_4	B_1	Γ_4	A_2''	Γ_4	1	-1	1	-1	-1	1
E_2	Γ_6	E_2	Γ_6	E'	Γ_6	2	2	-1	-1	0	0
$\tilde{E_1}$	Γ_5	E_1	Γ_5	E''	Γ_5	2	-2	-1	1	0	0

$$6/mmm = 622 \otimes \overline{1} (D_{6h} = D_6 \otimes C_i)$$

The K point

In this case we have to use the general formula with $\chi_{A_1} = 1$

$$\chi_K(g) = \sum_{i=1}^2 \varphi_i(g, \vec{K}) \theta_i(g)$$

The phases are actually different for the two atoms and we get

C_{3v}	$oxed{E}$	C_3^{\pm}	σ_{v_i}
$\varphi_1\theta_1$	1	ω^*	0
$ arphi_2 heta_2 $	1	ω	0
χ_K	2	-1	0

$$\omega = e^{\frac{2\pi i}{3}}$$

The K point

C_{3v}	$\mid E \mid$	C_3^{\pm}	σ_{v_i}
$\varphi_1\theta_1$	1	ω^*	0
$\varphi_2 \theta_2$	1	ω	0
χ_K	2	-1	0

$$T_K = K_3$$

32 ((D_3)	3m ((C_{3v})	E E	$C_3^\pm \ C_3^\pm$	C'_{2i} σ_{di}
A_1 A_2 E	Γ_1 Γ_2 Γ_3	A ₁ A ₂ E	Γ_1 Γ_2 Γ_3	1 1 2	1 1 -1	1 -1 0

The fact that K_3 is 2-dimensional implies the *degeneracy* of the two bands at the K-point.

The M point

C_{2v}	$\mid E \mid$	C_2	σ_{d_2}	σ_{v_2}
$\varphi_1\theta_1$	1	0	1	0
$ arphi_2 heta_2 $	1	0	1	0
χ_M	2	0	2	0

$$T_M = M_1 + M_2$$

$mm2 (C_{2v})$	222 (D ₂)	E E	C_{2z} C_{2z}	σ_y C_{2y}	σ_x C_{2x}
$ \begin{array}{ccc} A_1 & & \Gamma_1 \\ B_2 & & \Gamma_4 \\ A_2 & & \Gamma_3 \\ B_1 & & \Gamma_2 \end{array} $	A Γ_1 B_3 Γ_4 B_1 Γ_3 B_2 Γ_2	1 1 1 1	1 -1 1 -1	1 -1 -1 1	1 1 -1 -1

 $mmm = 222 \otimes \overline{1} (D_{2h} = D_2 \otimes C_i)$

The symmetry lines

We know that the little group $G_{\vec{k}}$ for \vec{k} on a symmetry line is always a subgroup of the little groups for the endpoints.

For instance, the group-subgroup relations for the $T(\Gamma, k)$ line are

Γ	C_{6v}	$\mid E \mid$	C_2	C_3^{\pm}	C_6^{\pm}	σ_{d_i}	σ_{v_i}
$\mid T \mid$	C_{1h}	$\mid E \mid$					σ_{v_1}
$oxed{K}$	C_{3v}	$\mid E \mid$		C_3^{\pm}			σ_{v_i}

Then we can use subduction to obtain T_T either from T_{Γ} or from T_K .

The symmetry lines

To proceed from the Gamma point, we have to compare the character tables for C_{6v} and C_{1h}

622 (D ₆)	6mm (C _{6v})	62m (D _{3h})	E E E	C_2 C_2 σ_h	$C_3^{\pm} \ C_3^{\pm} \ C_3^{\pm}$	$C_{6}^{\pm} \ C_{6}^{\pm} \ S_{3}^{\pm}$	C'_{2i} σ_{di} C'_{2i}	$C_{2i}^{"}$ σ_{vi} σ_{vi}
$egin{array}{cccccccccccccccccccccccccccccccccccc$	A_1 A_2 B_2 C_3 C_4 C_4 C_5 C_5	A'_{1} Γ_{1} A'_{2} Γ_{2} A''_{1} Γ_{3} A''_{2} Γ_{4} E' Γ_{6} E'' Γ_{5}	1 1 1 1 2 2	1 1 -1 -1 2 -2	1 1 1 1 -1	1 1 -1 -1 -1	$ \begin{array}{cccc} & 1 & \\ & -1 & \\ & 1 & \\ & -1 & \\ & 0 & \\ & 0 & \\ \end{array} $	1 -1 -1 1 0 0

C_{6v}	$oldsymbol{E}$	σ_{v_i}
$oxed{C_{1h}}$	$\mid E \mid$	σ_{v_1}
Γ_1	1	1
Γ_3	1	-1

$$6/mmm = 622 \otimes \overline{1} (D_{6h} = D_6 \otimes C_i)$$

1	$\bar{1}(C_i)$		C_2)			E E	I C2-
			2 (02)		$m\left(C_{1h}\right)$		σ_z
$A_{\mathfrak{g}}$	Γ_1^+	A	Γ_1	A'	Γ_1	1	1
<i>A</i> _u	Γ_1^-	В	$\Gamma_{2_{i}}$	Α"	Γ_2	1	-1

 $2/m = 2 \otimes \overline{1} (C_{2h} = C_2 \otimes C_i)$

$$\Gamma_1 \to T_1$$
 $\Gamma_3 \to T_2$

Compatibility relations

$$T_{\Gamma} = \Gamma_1 + \Gamma_3 \longrightarrow T_T = T_1 + T_2$$

The symmetry lines

The remaining compatibility relations are obtained in the same way

$$\Gamma_1 o T_1$$
 $\Gamma_3 o T_2$

$$K_3 \rightarrow T_1 + T_2$$

$$\Gamma_1 o \Sigma_1$$
 $\Gamma_3 o \Sigma_1$

$$\Gamma_3 \to \Sigma_1$$

$$M_1 \to \Sigma_1$$

$$M_2 \to \Sigma_1$$

$$M_1 \rightarrow T_1'$$

$$M_2 \rightarrow T_2'$$

$$K_3 \rightarrow T_1' + T_2'$$

$$T_{\Gamma} = \Gamma_1 + \Gamma_3$$
 $T_K = K_3$
 $T_M = M_1 + M_2$

$$T_T = T_1 + T_2$$

$$T_{\Sigma} = 2\Sigma_1$$

$$T_T = T_1 + T_2$$
 $T_{\Sigma} = 2\Sigma_1$
 $T_{T'} = T'_1 + T'_2$

"Pi-bands" (from pz orbitals)