Group theory, representations and their applications in solid state

Outline of the course

- 1. Introduction: Symmetries, degeneracies and representations.
- 2. Irreducible representations as building blocks. Application to molecular vibrations.
- 3. Operations with representations: Physical properties and spectra.
- **4. Spin and double valued representations.** Splitting of atomic orbitals in crystals.
- 5. Representation theory and electronic bands.

Vibrational spectrum of CH3D

Group theory tells you that each triply degenerate frequency splits: 3 →1+2:

1x1+1x2+2x3=9→3x1+3x2=9
(3 nondegenerate +3 doubly degenerate = 6 different frequencies)

If T is a representation of a group G and $G_1 \subset G$ is a subgroup of G, then T subduces the representation T_1 of G_1 according to the obvious rule

$$\forall g \in G_1, \ T_1(g) = T(g)$$

It often happens that an IR of G subduces a reducible representation T_1 of G_1 . Then T_1 can be decomposed as a sum of IRs of G_1 .

When this is done for all the IRs of the parent group *G*, we have a *subduction table*.

Example: $T_d \rightarrow C_{3v}$

T_d	$oldsymbol{E}$	C_{3j}^{\pm}	C_{2m}	σ_{dp}	S_{4m}^{\pm}
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
$oldsymbol{E}$	2	-1	2	0	0
T_2	3	0	-1	1	-1
T_1	3	0	-1	-1	1

C_{3v}	$oldsymbol{E}$	C_3^{\pm}	σ_{di}
A_1	1	1	1
A_2	1	1	-1
$oldsymbol{E}$	2	-1	0

Subduction table:

T_d	A_1	A_2	$\mid E \mid$	T_2	T_1
C_{3v}	A_1	A_2	E	$A_1 + E$	$A_2 + E$

Example: $T_d \rightarrow C_{3v}$

1	A_1		l		T_1
C_{3v}	A_1	A_2	$oxed{E}$	$A_1 + E$	$A_2 + E$

According to this table, any triply degenerate level of a system with symmetry T_d will split into two levels, one of them doubly degenerate, when the symmetry is broken down to C_{3v}

$$\mathbf{3} o \mathbf{1} + \mathbf{2}$$

Application to $\operatorname{CH}_4 \to \operatorname{CH}_3\operatorname{D}$

	A_1		I		T_1
C_{3v}	A_1	A_2	$oldsymbol{E}$	$A_1 + E$	$A_2 + E$

 CH_4

$$Vib = A_1 + E + 2T_2 \longrightarrow$$

 CH_3D

$$Vib = 3A_1 + 3E$$

Atomic orbitals

In the central field approximation

$$\mathcal{H}_C \psi_{nlm}(\vec{r}) = E_{nl} \psi_{nlm}(\vec{r})$$

and each single-electron energy has a degeneracy 2(2l+1) with the factor of two from the spin degeneracy (neglecting spin-orbit couplings).

In a crystal, the symmetry will be reduced from O(3) to the local point group G

$$O(3) \to G$$

As a consequence of the reduction of the symmetry from O(3) to the local group G, some degeneracies may be broken.

For instance, when the local group is C_{3v} the atomic orbitals split according to

$$s \rightarrow a_1$$

 $p \rightarrow a_1 + e$
 $d \rightarrow a_1 + 2e$
 $f \rightarrow 2a_1 + a_2 + 2e$

The irreducible representations of SO(3)

SO(3) is the group of all possible rotations in \mathbb{R}_3 .

SO(3) is a Lie group. It can be shown that the multiplets studied in quantum mechanics define the IRs D_l of SO(3):

$$D_l = D_l(\{|l, m\rangle\}), dim(D_l) = 2l + 1$$

Thus SO(3) has infinitely many (unitary) IRs.

The characters are easily determined by taking as representative of each class a rotation about the OZ axis

The irreducible representations of SO(3)

The character of D_l

Every element of SO(3) can be written as an exponential

$$R(\vec{\theta}) = \exp\frac{i\vec{\theta} \cdot \vec{L}}{\hbar}$$

Using $L_z|l,m\rangle=\hbar m|l,m\rangle$ gives

$$\chi_l(C_\theta) = tr\left(\exp\frac{i\theta L_z}{\hbar}\right) = \sum_{m=-l}^l e^{im\theta} = \frac{e^{i(l+1)\theta} - e^{-il\theta}}{e^{i\theta} - 1}$$

$$\chi_l(C_\theta) = \frac{\sin(l + \frac{1}{2})\theta}{\sin\frac{\theta}{2}}$$

The irreducible representations of O(3)

O(3) contains both proper and improper operations, and can be written as a direct product

$$O(3) = SO(3) \otimes C_i$$
, $C_i = \{E, I\}$

As a consequence, the IRs of O(3) are obtained from those of SO(3) and C_i .

Concretely, one has to specify the value of l in D_l and the behaviour under the inversion or parity. Thus, for each IR of SO(3) there are two different IRs of O(3) denoted D_l^{\pm} .

The irreducible representations of O(3)

The character of $D_i^P(P=\pm)$

$$\chi_l(E) = 2l + 1$$

$$\chi_l(C_\theta) = \frac{\sin(l + \frac{1}{2})\theta}{\sin\frac{\theta}{2}}$$

$$\chi_l(S_\theta) = \chi_l(C_\pi)P$$

$$\chi_l(S_\theta) = \chi_l(C_{\pi-\theta})P$$

$$\chi_l(I) = (2l+1)P$$

$$\chi_l(\sigma) = \chi_l(C_{\pi})P$$

$$\chi_l(S_{\theta}) = \chi_l(C_{\pi-\theta})P$$

The second column has been obtained by using

$$\sigma = IC_{\pi}$$

$$S_{\theta} = \sigma_{\perp} C_{\theta} = IC_{\pi - \theta}$$

Atomic orbitals

In the *central field approximation* to multielectron atoms each electron moves in a spherically symmetric effective potential, independently of the other electrons.

The one-electron states are atomic orbitals

$$\psi_{nlm}(\vec{r}) = R_{nl}(r)Y_l^m(\theta,\varphi)$$

The radial functions are invariant under O(3) and only the spherical harmonics transform. The parity of a spherical harmonic is $P = (-)^l$.

$$Y_l^m \in D_l^P , \quad P = (-)^l$$

Splitting of atomic orbitals (weak spin-orbit)

This is basically a subduction problem. If the *local* point group for the atom is, for instance, C_{3v} , we can use the character formulas to obtain the characters of the subduced

representations

C_{3v}	$oxed{E}$	C_3^{\pm}	σ_{di}
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0
D_0^+	1	1	1
D_1^-	3	0	1
D_2^+	5	-1	1
D_3^-	7	1	1

$$D_0^+ = A_1$$

$$D_1^- = A_1 + E$$

$$D_2^+ = A_1 + 2E$$

$$D_3^- = 2A_1 + A_2 + 2E$$

$$s \rightarrow a_1$$

 $p \rightarrow a_1 + e$
 $d \rightarrow a_1 + 2e$
 $f \rightarrow 2a_1 + a_2 + 2e$

Splitting of atomic multiplets (strong spin-orbit)

When *spin-orbit interaction* is important, each orbital splits into two multiplets defined by the total angular momentum *j* of the electron according to

$$l \rightarrow j = l \pm 1/2$$

For instance, p orbitals split into a multiplet with j=1/2 and another multiplet with j=3/2. In terms of representations of O(3)

$$D_1^- \times D_{1/2}^+ = D_{1/2}^- + D_{3/2}^-$$

Note that the parity of the multiplet is always equal to that of the parent orbital.

The character of $D_l^P(P=\pm)$

$$\chi_l(E) = 2l + 1$$

$$\chi_l(C_\theta) = \frac{\sin(l + \frac{1}{2})\theta}{\sin\frac{\theta}{2}}$$

$$\chi_l(S_\theta) = \chi_l(C_\pi)P$$

$$\chi_l(S_\theta) = \chi_l(C_{\pi-\theta})P$$

$$\chi_l(I) = (2l+1)P$$

$$\chi_l(\sigma) = \chi_l(C_{\pi})P$$

$$\chi_l(S_{\theta}) = \chi_l(C_{\pi-\theta})P$$

Splitting of atomic multiplets (strong spin-orbit)

C_{3v}	$oldsymbol{E}$	C_3^{\pm}	σ_{di}
A_1	1	1	1
A_2	1	1	-1
$oldsymbol{E}$	2	-1	0
$oxedsymbol{D^{1/2}}$	2	1	0
$D_{\alpha/\alpha}^{-}$	4	-1	0

$$m_j = \frac{1}{N} \sum_{g \in G} \chi^*(g) \chi_j(g)$$

$$D_{1/2}^-: m_{A_1} = m_{A_2} = 2/3, \quad m_E = 1/3$$
 $D_{3/2}^-: m_{A_1} = m_{A_2} = 1/3, \quad m_E = 5/3$

The doubled-valued representations

The trouble with half-integral values of *j* is that the representation is no longer single-valued. In particular

$$\chi_{j}(\theta) = \frac{\sin(j + \frac{1}{2})\theta}{\sin\frac{\theta}{2}}$$

$$\Rightarrow \chi_{j}(\theta + 2\pi) = -\chi_{j}(\theta), \forall j = \frac{1}{2}, \frac{3}{2} \dots$$

Then we say that we are dealing with *double-valued* representations of SO(3).

The double groups

Alternatively, we may acknowledge that C_{θ} and $C_{\theta+2\pi}$ are in fact different symmetry operations.

From this viewpoint, the IRs for half-integral J are <u>not</u> representations of SO(3) but of its universal covering SU(2), which is ``twice as large" as SO(3).

Then, rather than double-valued IRs of the point groups, we will have *representations of the double point groups*.

This is more accurate, as the double point groups have a different structure and different number of classes.

The double groups

Example:

$$D_{1/2}^{-} = \bar{E}_{1}$$

$$D_{3/2}^{-} = \bar{E}_{1} + {}^{1}\bar{E} + {}^{2}\bar{E}$$

C_{3v}	$oldsymbol{E}$	$ar{E}$	C_3^{\pm}	\bar{C}_3^{\pm}	σ_{di}	$ar{\sigma}_{di}$
A_1	1	1	1	1	1	1
A_2	1	1	1	1	-1	-1
$^1ar{E}$	1	-1	-1	1	i	-i
$^2ar{E}$	1	-1	-1	1	-i	i
E	2	2	-1	-1	0	0
$ar{E}_1$	2	-2	1	-1	0	0
$D_{1/2}^{-}$	2	-2	1	-1	0	0
$D_{3/2}^{-}$	4	-4	-1	1	0	0

Note: $\bar{E} \equiv C_{2\pi}$

Splitting of p-orbitals in a crystal field (strong spin-orbit)

$$D_1^- \times D_{1/2}^+ = D_{1/2}^- + D_{3/2}^-$$

$$D_{1/2}^{-} = \bar{E}_{1}$$

$$D_{3/2}^{-} = \bar{E}_{1} + {}^{1}\bar{E} + {}^{2}\bar{E}$$