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Outline of the course

1. Introduction: Symmetries, degeneracies and representations.

2. Irreducible representations as building blocks. Application to molecular
vibrations.

3. Operations with representations: Physical properties and spectra.

4. Spin and double valued representations. Splitting of atomic orbitals in
crystals.

5. Representation theory and electronic bands.



From vectors to tensors

Molecular polarizability

To lowest order, the induced dipole moment of a molecule
Is proportional to the applied electric field

—

P =aFE

a IS the polarizability tensor. In components

Pq; — OéijEj

The transformation properties of the polarizability are those
of a tensor

Vg € G : aij — Vir(9)Vji(g)ar = V(g9)aV(g)




From vectors to tensors

Molecular polarizability

The polarizability describes a propertity of the molecule in
equilibrium and must be invariant under all its symmetries

ag =V(9)aV(g)' = a=|[a,V(9)] =0, VgeG

We will use group theory to find the most general form of
the polarizability compatible with the symmetry constraints

This is easier if we consider the electrostatic energy
E ~ ﬁ E ~ &ijEiEj




From vectors to tensors

Molecular polarizability
The energy is quadratic in the electric field.

The energy must be a linear combination of quadratic
Invariants in the electric field.

The electric field belongs to the vector representation. For
the group Cj,

V(E,,E,, E.) = A (E.) + E(E,, E,)

All the representations in this equation are unitary. norms
and scalar products are invariant under the symmetry

group



From vectors to tensors
V(E,,E,,E.)=A,(E,) + E(E,, E,)

A (E,) x A((E,) —|E?
E(E,,Ey) x E(E,, Ey) —|E2 + E;

This implies
a;;B;E; = a(E; + EJ) + bE
or

This is valid for any molecule with symmetry group Cs,



From vectors to tensors
Molecular polarizability
For any molecule with symmetry 7
V(E:, E,,E,) =T(FE;,E,, E,)

the only quadratic invariant is EZ2 + E§ + B
This implies an isotropic polarizability
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Molecular vibrations

If the molecule has A atoms, its configuration is described
by a 3A dimensional vector v = (u, us,...,1) With

The kinetic energy is given by

T = Z moé_’2 Z—UtMu

where M is the diagonal mass matrix

M = [mlamlamh JE 7mA7mAamAJ




Molecular vibrations

The potential energy is expanded about the equilibrium
configuration keeping only second order contributions

3A 1 1
1,7=1

where U is the symmetric, but non-diagonal potential matrix

2
U — 0“U
ﬁuiﬁuj
The lagrangian is thus given by

1 1




Molecular vibrations

This lagrangian gives rise to a set of coupled linear
differential equations

Mu+Uu=0

The normal modes and frequencies are found by making
the ansatz u(t) = ne’" which gives

(U — Mw*)n =0

This is not a standard eigenvalue problem due to the
presence of the matrix M. To solve it, we make the
change of coordinates @ = M/ %4, .

10



Molecular vibrations

The lagrangian in the new variables

1 .,. 1 |, ~
£:§ﬁ@—§an

with U = M~ 12U M —1/2gives rise to an ordinary
eigenvalue problem.

(U —-w)in =0

2
o

Solving the eigenvalue problem yields 3A frequencies w
The corresponding normal modes satisfy 7,715 = a5

Reverting to the original coordinates shows that normal
modes satisfy

anMng — 5045




Molecular vibrations

PURE VIBRATIONS
The mechanical representation acts on

LM — Ltrans D L’rot D LVib

— —

Ltmnszu:(t,...,t)
Lmt:u:(cD’XRl,...,oD’xRA)

Ly is defined by the constraints

A A
Zmaﬁa:() , Zma(ﬁaxﬁa):()
a=1 a=1

that imply Lv;y L Liyrgns and Ly, L Loy With respect to
the mass metric (w1, us) = u} Mus




Molecular vibrations

Molecular vibrations

Consider the methane molecule with symmetry 7.

Assume we have obtained symmetry-adapted coordinates
for the IRs in the vibrational representation

Vib = Ai1(q1) + E(q2,q3) + T2(q4, 45, g6) + T2(q7,qs, Qo)

The normal modes and frequencies~are obtained by
diagonalizing the potential matrix U = M Y2 —1/2

~

(U —w*)n =0

13



Molecular vibrations

Molecular vibrations

The potential matrix has to be invariant under all the
elements of the group 1.

U, M(g)] =0, Vg € Ty

These constrains can be solved more easily by considering
the invariance of the potential energy

1 . -
((:P — §@tUﬂ

This must be a linear combination of quadratic invariants
in the symmetric coordinates {q1,q2,---,q9}



Molecular vibrations

Molecular vibrations

Vib = Al(Ql) I E(qQa Q3) £ B Tz((h: ds5, (](s) + 15(q7,9s,q9)

A1((J1) X Al(Ql) (J%
E(Q27Q3) XE(QZ7Q3 qg+qg
a; + a5 + qg

@+ g3 + qq

4497 + 4548 + 4649

4 b4

)
T5(qa,95,96) % T2(q4, g5, g6)
)
)

TQ(Q77Q87Q9) X TQ(Q77QS7 d9
T5(qa,q5,96) % T2(q7, g8, 99

This shows that the most general potential energy for the
methane molecule depends only on 5 free parameters.



Molecular vibrations

Molecular vibrations
Uijqiq; = ags + b(g3 +q3) + c(q3 + ¢ + ¢7)

+d(q5 + ¢z + 45) + 2e(qaqr + 4598 + q699)
or

16



Molecular vibrations
Molecular vibrations
Vib= Ai1(q1) + E(q2,93) + 15(q4, 5, 96) + 12(q7, g8, q9)

Reorder the coordinates {q1, 42, 43, 44, 47, @5, 92, 965 4o }

a

S




Molecular vibrations

Molecular vibrations
Vib= Ay(q1) + E(q2,93) + T2(q4, G5, 96) + 12(q7, 43, q9)
Uijq:q; = aqi +b(g3 +q3) + (@3 + ¢ + ¢2)
+d(g7 + 5 + ¢3) + 2e(qaqr + q598 + g64o)

18



Molecular vibrations
Molecular vibrations
Vib= Ai(q1) + E(q2,93) + 12(q4, 95, 96) + T2(q7,qs, q9)

Reorder the coordinates {Q17 q2,43, 44, 97, 45, 48, 46, qﬁ)}

a wi(Ai) =a
b
b
~ € ¢ e
U= e d ( e d )
e

Q
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Molecular vibrations

Molecular vibrations

Vib=...+m;7; + ...

In general, for each IR with dimension d and multiplicity
m in the decomposition of Vib, there are d identical mxm

matrices in the diagonal of the potential matrix.

Upon diagonalization, they give rise to m different
d-degenerated frequencies.

20



Appendix: The product representation

Rank-2 tensors ¢;; live in the 9-dimensional
space R; ® Rs and transform like the products

{3’51@, Y1Y2, 2122, L1Y2,Y1T2,Y122,21Y2, 212, $122}

Rank-2 tensors belong to the product representation
VxV=V?

General representations

Given two representations 77 and 75 acting on
representation spaces of dimensions d;and d», the
tensors in L1 ® Lo belong to the product representation

T3 = T1 X T2
with

x3(9) = x1(9)x2(9)

21



Number of bilinear invariants

Given two real IRs 71 and 72 actingon Li(z1,...,2z4,)
and L»(vy1,...,y4,), bilinears in their coordinates belong
to the product representation s = 71 X 7.

The number of bilinear invariants is equal to the number of
times the identity representation is contained in73 = 71 X 7

1 1
mi =) X3(9) 1= > xi(9)xalg) = (x1,x2) = 012
gel geqG

There are no invariants if 71 Z72. And for equivalent IRs, the
only bilinear invariant is given by

T1Y1 + .- TdYd

This form of the invariant is valid only if the matrices of
the two equivalent IRs are identical.
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