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Outline of the course

1. Introduction: Symmetries, degeneracies and representations.

2. Irreducible representations as building blocks. Application to molecular 
vibrations.

3. Operations with representations:  Physical properties and spectra.

4. Spin and double valued representations. Splitting of atomic orbitals in 
crystals.

5. Representation theory and electronic bands. 
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Reducible and irreducible representations
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V (x, y, z) = A1(z) + E(x, y)
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In group theory language, we say that ~a belongs to the
vector representation V and write

V (a
x

, a
y

, a
z

)

Invariants can be constructed by taking inner products of objects
that belong to the same representation, so that their variations
cancel out.

System invariant under the crystal point group C3v.
The hamiltonian H(~a) depends on one vector variable.

~a = (a
x

, a
y

, a
z

)

vskip1cm The pyramid is invariant under 2⇡
3 rotations

and 3 vertical reflection planes.
The hamiltonian H(~a) depends on one vector variable.

The pyramid is invariant under 2⇡
3 rotations

and 3 vertical reflection planes.
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The group C3v is generated by a 2⇡
3 rotation around

the OZ axis and a vertical plane:

The vector representation V decomposes into the two
irreducible representations (IRs) A1 and E
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Reducible and irreducible representations
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The representation W decomposes into the two irreducible

representations A1 and E

W (x, y, z) = A1(y � z) + E(2x, y + z)
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Equivalent representations

T2(g) = AT2(g)A
�1 8g 2 G

In our case,                                                 with 

A =

0

@
1 0 0
0 1 1
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A

W (g) = AV (g)A�1 8g 2 C3v

Thus W(g) is just V(g) in the coordinate system                  (x0
, y

0
, z

0)

Two representations     and     of a group G are said to 
be equivalent if there is a non-singular matrix  A such 
that

T1 T2

This can be interpreted as a change of coordinates, 
with                 , i.e.   u0 = Au x

0 = x, y

0 = y + z, z

0 = y � z
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Characters
Traces are invariant under changes of basis

A representation  is thus fully characterized by the set 
of traces of the elements of the group G.

tr(AT (g)A�1) = tr(T (g))

As a consequence, equivalent representations have 
identical traces. The converse is also true

T1 ⌘ T2 , tr(T1(g)) = tr(T2(g)) 8g 2 G

The set of traces of T(g) for all the elements of the group 
G is kown as the character of the representation T.
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Character tables
C3v E C+

3 C�
3 �d1 �d2 �d3

A1 1 1 1 1 1 1
A2 1 1 1 -1 -1 -1
E 2 -1 -1 0 0 0

V 3 0 0 1 1 1
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Reducible and irreducible representations
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Character tables
C3v E C+

3 C�
3 �d1 �d2 �d3

A1 1 1 1 1 1 1
A2 1 1 1 -1 -1 -1
E 2 -1 -1 0 0 0

V 3 0 0 1 1 1

There are three classes in C3v

{E}, {C+
3 , C�

3 }, {�d1,�d2,�d3}

V = A1 + E , �V = �A1 + �E

Two elements     and     of G belong to the same class if 
there is an element h in G such that g2 = h � g1 � h�1

g1 g2
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Character tables
C3v E C±

3 �di

A1 1 1 1
A2 1 1 -1
E 2 -1 0

V 3 0 1

V = A1 + E , �V = �A1 + �E

There are three classes in C3v

{E}, {C+
3 , C�

3 }, {�d1,�d2,�d3}

Two elements     and     of G belong to the same class if 
there is an element h in G such that g2 = h � g1 � h�1

g1 g2
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How many non-equivalent IRs?

THEOREM:The number of non-equivalent irreducible 
representations for a finite group G is equal to the 
number of classes in G.

THEOREM:The sum of the squares of the dimensions 
of the non-equivalent irreducible representations of a 
finite group G is equal to the order of the group (i.e., the 
number of elements of G).

d21 + d22 + . . .+ d2C = N

COROLLARY: The IRs of abelian groups are always 
one-dimensional.

11



Decomposing a reducible representation

(�1,�2) =
1

N

X

g2G

�⇤
1(g)�2(g)

THEOREM: If      and       are irreducible representations 
of a group G, then 

⌧i ⌧j

(�i,�j) = �ij

DEFINITION: Given two representations     and     of a 
group G, we define the following scalar product:  

T1 T2
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Character tables
C3v E C+

3 C�
3 �d1 �d2 �d3

A1 1 1 1 1 1 1
A2 1 1 1 -1 -1 -1
E 2 -1 -1 0 0 0

V 3 0 0 1 1 1
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Decomposing a reducible representation
To find the decomposition of a reducible representation

T = m1⌧1 +m2⌧2 + . . .mc⌧c
just take the scalar product of 

�T = m1�1 +m2�2 + . . .mc�c

This is the famous “magic formula” that gives the 
multiplicities of the different IRs  
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with      to get   (�T ,�j) =
X

i

mi(�i,�j) = mj�j
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Decomposing the vector representation
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Computing characters

If the matrices of the representation are known, we just 
take the traces. 

But, in practice, we don’t need all the actual matrices in 
order to compute the character of a representation. 
Instead, we use the following tricks:

a) Characters are class functions. Therefore, choose 
the “easiest” element from each class. 

b) Traces are independent of the coordinates.  Therefore, 
choose the most convenient coordinates for each element.
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Computing the character of V
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Computing the character of V
General formulas 
Besides the identity, a point group may contain only 
four types of elements

Rotations
Reflection planes
Inversion
Roto-reflections

I
�
Cn

Sn

By choosing the appropriate coordinates, one easily finds
�V (Cn) = 1 + 2 cos ✓n

�V (Sn) = �1 + 2 cos ✓n

�V (�) = 1

�V (I) = �3
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C3v E C±
3 �di

A1 1 1 1
A2 1 1 -1
E 2 -1 0

V 3 0 1

Computing the character of V

�V (Cn) = 1 + 2 cos ✓n

�V (Sn) = �1 + 2 cos ✓n

�V (�) = 1

�V (I) = �3
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Computing the character of R
General formulas 

The rotational representation tells how pseudovectors 
(a.k.a.  axial vectors) transform.  

Axial vectors transform like vectors under rotations, but 
with a relative minus sign under “improper”operations.

Thus the formulas for the vector representation imply

�R(Cn) = 1 + 2 cos ✓n

�R(Sn) = 1� 2 cos ✓n

�R(�) = �1

�R(I) = 3
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Computing the character of M

The mechanical representation tells how general 
mechanical deformations of a molecule transform.
The matrices for the mechanical represention have a 
block structure where the blocks are just the matrices of 
the vector representation.

General formula 
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Computing the character of M
General formula 
The mechanical representation tells how general 
mechanical deformations of a molecule transform.
The matrices for the mechanical represention have a 
block structure where the blocks are just the matrices of 
the vector representation.

The blocks are on the diagonal when the corresponding 
atoms are invariant under the symmetry operation. Thus

�M (g) = ninv(g)�V (g)

where                is the number of atoms invariant under g. ninv(g)
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C3v E C±
3 �di

ninv 5 2 3

Computing the character of M
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Computing the character of M
C3v E C±

3 �di

A1 1 1 1
A2 1 1 -1
E 2 -1 0

V 3 0 1
ninv 5 2 3

M 15 0 3
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6
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6
(15⇥ 1 + 0⇥ 1⇥ 2 + 3⇥ (�1)⇥ 3) = 1

M = 4A1 +A2 + 5E
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Vibrational spectrum of CH3D
GROUP THEORY COMPUTATIONS:  

M = 4A1 +A2 + 5E

V = A1 + E

R = A2 + E

V ib = M � V �R = 3A1 + 3E

IR A1 A2 E
dim 1 1 2

                  are irreducible representations of the 
point group C3v(3m)
{A1, A2, E}

V ib = 3A1 + 3E

9 = 3⇥ 1+ 3⇥ 2
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Summary
COMPUTING CHARACTERS  

�V (Cn) = 1 + 2 cos ✓n

�V (Sn) = �1 + 2 cos ✓n

�V (�) = 1

�V (I) = �3

�R(Cn) = 1 + 2 cos ✓n

�R(Sn) = 1� 2 cos ✓n

�R(�) = �1

�R(I) = 3

�M (g) = ninv(g)�V (g)

DECOMPOSING REPRESENTATIONS  

mj =
1

N

X

g2G

�⇤(g)�j(g) V ib = M � V �R
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