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Why group theory?

Powerful: Lets you extract all the physical consequences
of the symetries of a system, in a systematic and reliable
way

Simple: At the user level, it is one of the simplest, least
demanding theoretical techniques

(Besides the four rules, you just need the most basic
acquaintance with matrices)



What symmetries?
Space-time symmetries: Rotations, translations, parity,
TRS, Lorentz boosts, Galileo boosts,...

Internal symmetries: SU(2) isospin, SU(2)xU(1)
electroweak, SU(3) color,...

In condensed matter we will be concerned with space-time
symmetries (parity, TRS, rotations and translations).




What symmetries?

Continuous symmetries: Lie groups (Casimirs, Cartan
subalgebra, Dynkin diagrams, Young tableaux,...)

Discrete symmetries: Discrete groups (characters,
orthogonality of characters of IRs, projectors,...)

In condensed matter we will be concerned with discrete

symmetries, more concreteley with discrete subgroups of
O(3), lattice translations and TRS.




What consequences?

Continuous symmetries: Symmetries = Conservation
laws — Degeneracies + selection rules,...

Discrete symmetries: Symmetries = Degeneracies +
selection rules,...

It is relatively easy to obtain physical consequences from
conservation laws, even without (explicitly) using group

theory.

In the absence of conservation laws, the use of group
theory to obtain the consequences of the system
symmetry is virtually unavoidable.




Continuous symmetries Discrete symmetries

Conservation laws

Degeneracies, Degeneracies,
selection rules, ... selection rules, ...
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Outline of the course

1. Introduction: Symmetries, degeneracies and representations.

2. Irreducible representations as building blocks. Application to molecular
vibrations.

3. Operations with representations: Physical properties and spectra.

4. Spin and double valued representations. Splitting of atomic orbitals in
crystals.

5. Representation theory and electronic bands.
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Vibrational spectrum of methane (CH4)

Can we say anything about
the spectrum just by looking
at the molecule?

4+1=5 atoms
5x3 =15 degrees of freedom

In the harmonic approximation,
the frequencies and normal
modes can be found by
diagonalizing a 15x15
symmetric matrix.

Diagonalizing a generic 15x15 matrix yields 15 frequencies
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Vibrational spectrum of methane (CH4)

BUT: Our 15x15 matrix is not generic. It describes the
dynamics of a molecule.

The 15 degrees of freedom include 3 rigid franslations
and 3 rigid rotations, where the molecule moves as a
whole without changing the geometry of the bonds.
This leaves 9 genuine vibrations.

15=6 zero modes + 9 vibrational modes

That is as far as we can go without taking into
consideration the symmetries of the molecule.
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Vibrational spectrum of methane (CH4)

If you know group theory, you
can easily obtain:

[1x1+1x2+2x3=9 |
(1 non-degenerate +1 doubly
+2 triply degenerate = 4
different frequencies)

You will also know that all 4
frequencies are Raman
active, but only the triply
degenerate frequencies are
IR active.

Moreover, methane is MW inactive.
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Vibrational spectrum of CH3D

Group theory tells you that
each triply degenerate
frequency splits: 3 =1+2:

1x1+1x2+2x3=9—3x1+3x2=9|
(3 nondegenerate +3 doubly
degenerate = 6 different
frequencies)

Now all 6 frequencies are
both Raman active, and
IR active.

Moreover, deuterated methane is MW active.
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Vibrational spectrum of methane (CH4)

GROUP THEORY COMPUTATIONS:
M=A+F+31T5+ 1T
V =15
R =T
Vib=M-V —R=A,+FE+215
These are all statements about representations.

A representation tells you how something transforms
under the symmetries of the system.
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Vibrational spectrum of methane (CH4)

GROUP THEORY COMPUTATIONS:
M=A+F+31T5+ 1T
V =15
R =17

Vib=M—-V —R=A4; +F + 275

M: Mechanical representation. dim (M) = 15
V: Vector representation. dim (V) =3

R: Rotational representation. dim (R) =3
Vib: Vibrational representation. dim (Vib) = 9

15=6 zero modes + 9 vibrational modes
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Vibrational spectrum of methane (CH4)

GROUP THEORY COMPUTATIONS:
M=A+F+31T5+ 1T
V =15
R =17

Vib=M—-V —R=A4; +F + 275

{Aq, E,T1,T5 }are irreducible representations of the point
group T, (43m)

IR Al E T2 Tl
dim 1 2 3 3

Vib=A; + F + 275
0=1x14+1x2+2x3




Vibrational spectrum of methane (CH4)

If you know group theory, you
can easily obtain:

1x1+1x2+2x3=9
(1 non-degenerate +1 doubly
+2 triply degenerate = 4
different frequencies)
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Vibrational spectrum of CH3D

GROUP THEORY COMPUTATIONS:
M=4A,+ Ay +5E
V=A +F
R=Ay+ E
Vib=M -V —R=3A,+3E

{Aq, Ay, F'}are irreducible representations of the
point group Cs,,(3m)

IR || Ay | Ay | E
dim 1 1 2

Vib=3A{+3F
9=—3x14+3x2
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The symmetry group

The symmetry group of CH3D is Cs,(3m).
Cs, 18 the group of symmetries of a triangular pyramid.

7 4
The pyramid is invariant under 2Z or 24X rotations

3
and under 3 vertical reflection planes.

3
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The vector representation

Tells you how ordinary vectors transform under the
elements of the symmetry group:

_ + —
CSU — {E7 03 703 7O-d170-d270-d3}




The vector representation
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The vector representation
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Definition of representation

A representation T of a group G assigns to each
element g € G a linear operator 7(g) in such a way that

191092 =93 = T(g1)T(92) = T(g3)|

Example:

Cy oCy =Cy5 = V(Cy)V(C5) =V(Cy)

v3 - _1 v 1 g | =] -3 _1 ¢ |= 3
\(2) 0 1)\(2) 0 1) \02 021)
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Reducible and irreducible representations
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The vector representation V' decomposes into the two
irreducible representations (IRs) A; and E

\V(z,y,2) = A1(2) + E(x,y)|
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Reducible and irreducible representations

A representation T of a group G assigns to each
element g € G a linear operator 7(g) in such a way that

191092 =93 = T(g1)T(92) = T(g3)|

Example:

Cy oCy =Cy5 = V(Cy)V(C5) =V(Cy)

(3 =0\ (5 =0 [ o)
\ 0 o [T/\ 0o o1/ \ 0 01
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Reducible and irreducible representations

1 0 0 1 0 O
W(E)=] 0 1 0 W(oan)={ 0 0 -1
0 0 1 0 —1 0
(-} -4 ) (-4 -F %)
W(Cy) = @ : —3 Wi(oa2) = @ 2 —3
\ 5 -1 i) \ -5 -1 1 )
(4 F) SEEA
wes) = - 1 -3 Wioas)=| 2 3 —
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The representation W decomposes into the two irreducible
representations A; and £

W(z,y,z) = A1y — 2) + E(2z,y + 2)
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Equivalent representations

Two representations 7' and 75 of a group G are said to

be equivalent if there is a non-singular matrix A such
that

Tz(g) = ATQ(Q)A_l \V/g c G

In our case, W(g) = AV (g)A~" Vg € Cs, with

1 0 O
A= 0 1 1
0 1 -1

This can be interpreted as a change of coordinates,
with «' = Au ,ie. 2’ =2, vV =y+2, 2 =y—=z2

Thus W(g) is just V(g) in the coordinate system (z', v, ')
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Symmetry-adapted coordinates

The block structure of the matrices of a reducible
representation becomes apparent only when
symmetry-adapted coordinates are used.

(x,vy, z)are symmetry-adapted coordinates for the
vector representation of (s, .
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APPENDIX: Groups

In mathematics, a group G is a set of elements {¢: }
with the following properties

1) There is a composition law that asigns an
element g3 to each ordered pair of elements

g1 ©g2 = g3
2) There is a unique unit element e such that

eog=goe=g, Vg G

3) For each element g there is a unique inverse g~

gog '=g log=e Vgeq

4) The composition law is associative

(91 092) ©g3 — g1 © (92 093)
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