Topological Matter School 2018

Lecture Course GROUP THEORY AND TOPOLOGY

Donostia - San Sebastian

23-26 August 2018

REPRESENTATIONS OF SPACE GROUPS

DATABASES AND TOOLS OF THE BILBAO CRYSTALLOGRAPHIC SERVER

Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

Universidad del País Vasco Euskal Herriko Unibertsitatea

SPACE GROUPS

Crystal pattern: infinite, idealized crystal structure (without disorder, dislocations, impurities, etc.)

Space group G: The set of all symmetry operations (isometries) of a crystal pattern

Translation subgroup $T_G \triangleleft G$: The infinite set of all translations that are symmetry operations of the crystal pattern

Point group of the space groups P_G:

The factor group of the space group G with respect to the translation subgroup T: $P_G \cong G/H$

SPACE-GROUP REPRESENTATIONS

Irreducible representations of a group induced from the irreps of one of its normal subgroups

Method: Consider a group G and its normal subgroup $H \triangleleft G$ with its all irreps

I. Construct all irreps of H

2. Distribute the irreps of H into orbits under G and select a representative

3. Determine the little group for each representative

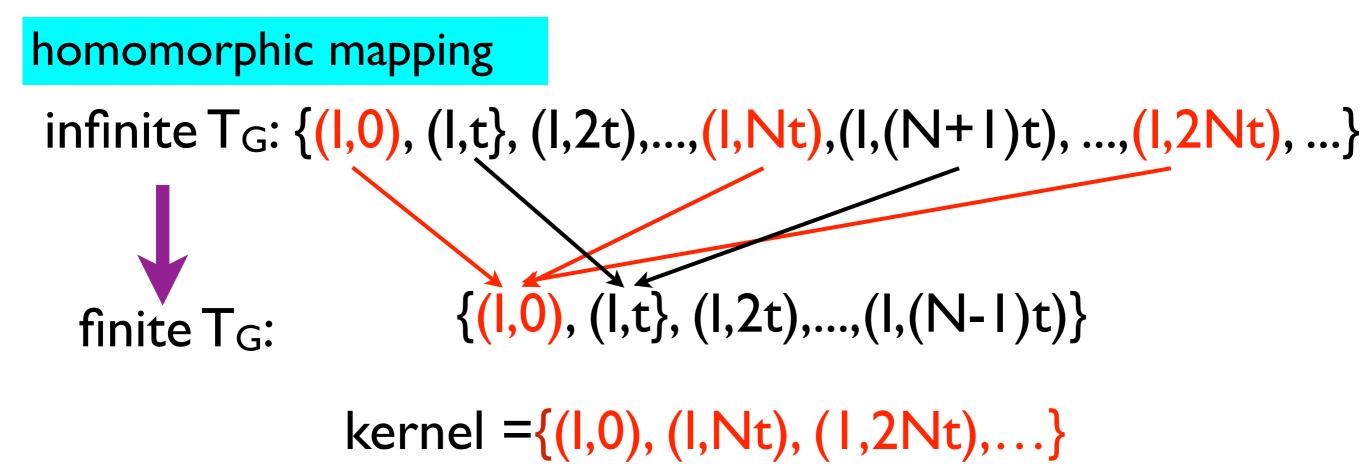
4. Find the small (allowed) irreps of the little group

5. Construct the irreps of G by induction from the the small (allowed) irreps of the little group

Step I. TRANSLATION SUBGROUP IRREPS T_G G

Born-von Karman boundary condition $(\mathbf{I}, \mathbf{t}_i)^{N_i} = (\mathbf{I}, \mathbf{N}_i) = (\mathbf{I}, \mathbf{o})$

$$(\mathbf{I}, \mathbf{N} \mathbf{t}); \quad \mathbf{N} \mathbf{t} = (N_1 t_1, N_2 t_2, N_3 t_3)$$



Irreps of Translation group

Finite Abelian groups { cyclic groups direct product of cyclic groups $\begin{array}{ccc} A & B \\ \{a, a^2, ..., a^s\} & \{b, b^2, ..., b^r\} & A \otimes B \\ & \{(a^m, b^n)\} \atop{n=1, ..., s}; \\ & & \\ \end{array}$ $D^{p}(a^{m}) \otimes D^{q}(b^{n})$ $D_{P}(a^{m}), p=0, I, ..., s-1 \quad D_{q}(b^{n}), q=0, I, ..., r-1$ $exp(-i2\pi m)\frac{p}{s} \quad exp(-i2\pi n)\frac{q}{r}$ $DP,q(a^{m}, b^{n}) = exp(-i2\pi m)\frac{p}{s} exp(-i2\pi n)\frac{q}{r}$ p=0,1,...,s-1 q=0,1,...,r-1

Translational subgroup:T

number of irreps:

 $p=0,1,...,N_1-1$ $q=0,1,...,N_2-1$ $r=0,1,...,N_3-1$

dim $D^{p,q,r}(t_1^k, t_2^l, t_3^m) = l$

IRREPS of the translation group T
reciprocal space
$$L: a_{1}, a_{2}, a_{3} \xrightarrow{a_{i}, a^{*}_{j} = 2\pi\delta_{ij}} L^{*}: a^{*}_{1}, a^{*}_{2}, a^{*}_{3}$$

$$K = (h_{1}, h_{2}, h_{3}) \begin{vmatrix} a^{*}_{1} \\ a^{*}_{2} \\ a^{*}_{3} \end{vmatrix}$$

$$\Gamma^{(q_{1} q_{2} q_{3})}[(\mathbf{I}, \mathbf{t})] = e^{-2\pi i (q_{1} \frac{t_{1}}{N_{1}} + q_{2} \frac{t_{2}}{N_{2}} + q_{3} \frac{t_{3}}{N_{3}})}$$

$$k_{i} = q_{i}/N_{i}$$

$$\Gamma^{(q_{1} q_{2} q_{3})}[(\mathbf{I}, \mathbf{t})] = \Gamma^{k}[(\mathbf{I}, \mathbf{t})] = \exp{-i(\mathbf{k} \mathbf{t})}$$

ITA conventions:

$$(\mathbf{k} \ \mathbf{t}) = (\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \begin{vmatrix} \mathbf{a}^* \\ \mathbf{$$

IRREPS of Translational group

unit cell of reciprocal space (fundamental region)

k'=k+K, K=h₁**a₁*+**h₂**a₂*+**h₃**a₃***, **K**
$$\in$$
L*
 $\Gamma^{k'}$ =exp(-i(**k**+**K**)t)=exp-i(**k**.t)= Γ^{k}

first Brillouin zone (Wigner-Seitz cell)

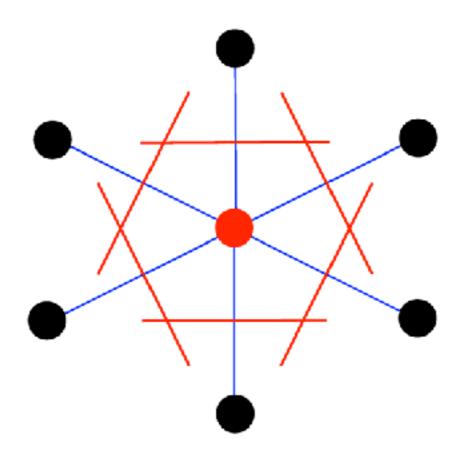
 $|\mathbf{k}| \leq |\mathbf{K} \cdot \mathbf{k}|, \forall \mathbf{K} \in L^*$

crystallographic unit cell

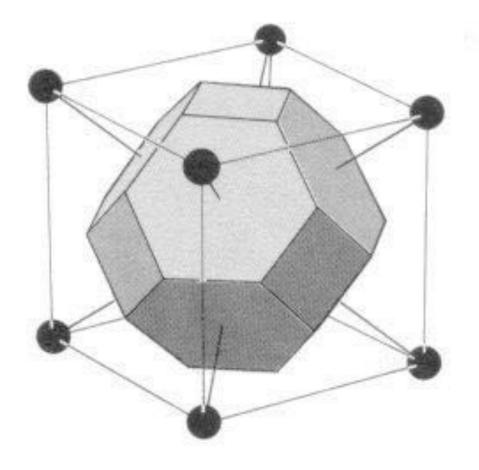
0≤|**k**|<|

first Brillouin zone (Wigner-Seitz cell)

 $|\mathbf{k}| \leq |\mathbf{K} \cdot \mathbf{k}|, \forall \mathbf{K} \in L^*$



Wigner-Seitz construction for bcc lattice



Classification of the irreps of the Translation subgroup.

orbits of irreps of T (under the action of G)

$$\begin{split} &\Gamma^{k'}(\mathbf{I}, \mathbf{t}) = \Gamma^{k} \left((\mathcal{W}, w)^{-1}(\mathbf{I}, \mathbf{t})(\mathcal{W}, w) \right), (\mathbf{I}, \mathbf{t}) \in \mathsf{T}, \ (\mathcal{W}, w) \in \mathsf{G} \\ &\Gamma^{k'}(\mathbf{I}, \mathbf{t}) = \Gamma^{k} \left(\mathbf{I}, \mathcal{W}^{-1} \mathbf{t} \right) = \exp^{-i}(\mathbf{k} . (\mathcal{W}^{-1} \mathbf{t})) = \exp^{-i}((\mathbf{k} \mathcal{W}^{-1}) . \mathbf{t}) \\ &\Gamma^{k'} \sim \Gamma^{k'} \mathbf{k'} = \mathbf{k} \mathcal{W} + \mathbf{k'} \end{split}$$

$$O(\Gamma^{k}) = \{\Gamma^{k}, \Gamma^{k'}, \dots, |\mathbf{k}' = \mathbf{k} W + \mathbf{K}, W \in \overline{G}\}$$

little co-group of **k**: G^k

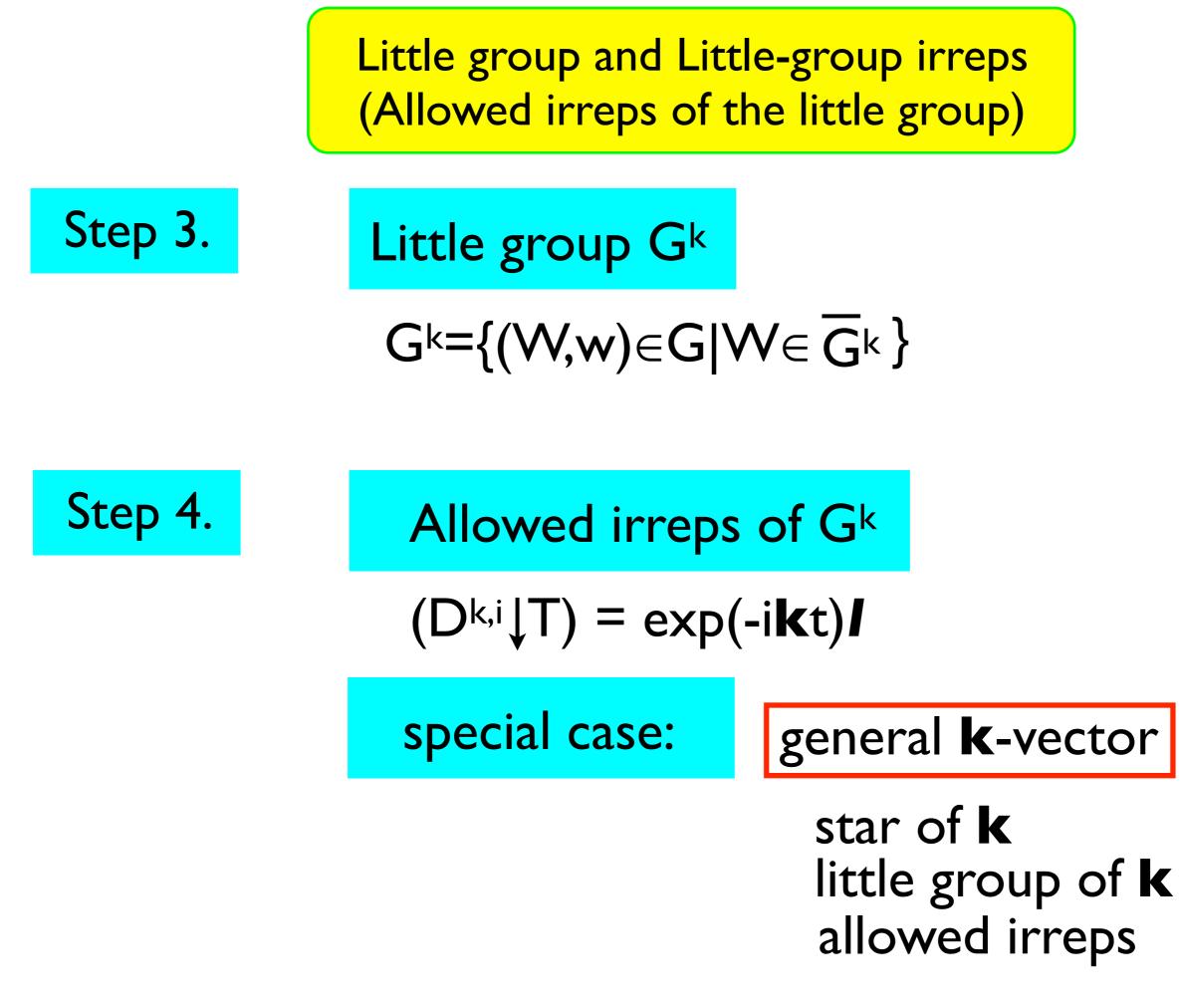
special and general

 $\overline{G}^k = \{I\} \quad \overline{G}^k > \{I\}$

Orbits of irreps of the Translation subgroup. orbit of k $O(\Gamma^{k})=\{\Gamma^{k},\Gamma^{k'},...,|\mathbf{k}'=\mathbf{k}\cdot \mathbf{W}+\mathbf{K},\mathbf{W}\in G\}$ star of k: k* $\overline{G}^{k} < \overline{G}$ $\overline{G}^{k} = \overline{G}^{k}+W_{2}\cdot\overline{G}^{k}+...+W_{m}\cdot\overline{G}^{k}$

representation domain

exactly one **k**-vector from each star (one irrep from each orbit of irreps of T)



Little-group irreps (Allowed irreps of the little group)

Step 4. Allowed irreps of G^k

- 1. ${\bf k}$ is a vector of the interior of the BZ OR
- 2. $\mathcal{G}^{\mathbf{k}}$ is a symmorphic space group.

allowed irreps
$$\mathbf{D}^{\mathbf{k},i}$$
:
 $\mathbf{D}^{\mathbf{k},i}(\mathbf{W},\mathbf{w}) = \exp(-(i\mathbf{k}\mathbf{w})\overline{\mathbf{D}}^{\mathbf{k},i}(\mathbf{W})$
Here $\overline{\mathbf{D}}^{\mathbf{k},i}$ is an irrep of $\overline{\mathcal{G}}^{\mathbf{k}}$.

Little-group irreps (Allowed irreps of the little group)

- k is a vector on the surface of the BZ AND
- 2. $\mathcal{G}^{\mathbf{k}}$ is a nonsymmorphic space group.

allowed irreps $D^{k,i}$:

$$\mathbf{D}^{\mathbf{k},i}(\widetilde{\mathbf{W}}_i,\widetilde{\mathbf{w}}_i) = \exp(-(i\mathbf{k}\mathbf{w}_i)\overline{\mathbf{D}}^{\mathbf{k},i}(\widetilde{\mathbf{W}}_i))$$

$$\overline{\mathbf{D}}^{k,i}$$
projective (ray) irreps of $\,\overline{\mathcal{G}}^k$

Construction of the irreps of the space group G by induction from the the small (allowed) irreps of the little group $G^k < G$

(a) Decomposition of $\mathcal G$ relative to $\mathcal G^{\mathbf{k}}$

 $\mathcal{G} = \mathcal{G}^{\mathbf{k}} \cup (\overline{W}_2, \overline{w}_2) \, \mathcal{G}^{\mathbf{k}} \cup \dots \, (\overline{W}_s, \overline{w}_s) \, \mathcal{G}^{\mathbf{k}}$

b) Construction of the induction matrix

The elements of the little group \mathcal{G}^{k} and the coset representatives $\{q_{1},q_{2},...,q_{s}\}$ of G relative to \mathcal{G}^{k} are necessary for the construction of the induction matrix

$$\mathsf{M}(\mathsf{W},\mathsf{w})_{ij} = \begin{cases} \mathsf{I} \text{ if } \mathsf{q}_i^{-\mathsf{I}}(\mathsf{W},\mathsf{w})\mathsf{q}_j \in \mathcal{G}^{\mathsf{k}} \\ \mathsf{0} \text{ if } \mathsf{q}_i^{-\mathsf{I}}(\mathsf{W},\mathsf{w})\mathsf{q}_j \notin \mathcal{G}^{\mathsf{k}} \end{cases}$$

0		0	0
0	0		0
	0	0	0
0	0	0	Ι

dim $M=s \times s$

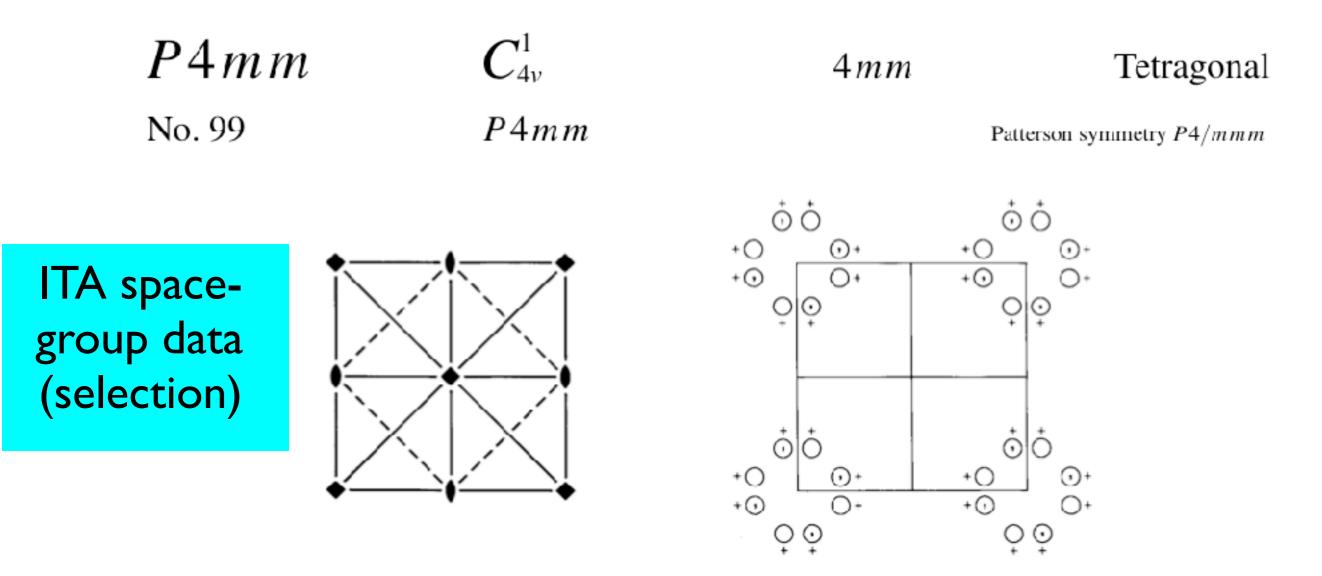
monomial matrix

c) Matri	ices of th	ne irreps	$\mathbf{D}^{\star \mathbf{k},m}$	of \mathcal{G} :	
$\mathbf{D}^{\star \mathbf{k},m}(\mathbf{W}_l, \mathbf{w}_l)_{i\mu, j\nu} = M(\mathbf{W}_l, \mathbf{w}_l)_{ij} \mathbf{D}^{\mathbf{k},m}(\widetilde{\mathbf{W}}_p, \widetilde{\mathbf{w}}_p)_{\mu\nu},$					
where $(\widetilde{\boldsymbol{W}}_p, \ \widetilde{\boldsymbol{w}}_p) = q_i^{-1} (\boldsymbol{W}_l, \boldsymbol{w}_l) q_j.$					
	0	I	0	0	
	0	0	I .	0	
	Ι	0	0	0	
	0	0	0		

All irreps of the space group \mathcal{G} for a given **k** vector are obtained considering all allowed irreps of the little group $\mathcal{G}^{\mathbf{k}}$ $\mathbf{D}^{\mathbf{k},m}$ obtained in step 3. Consider the k-vectors $\Gamma(0,0,0)$ and X $(0,\frac{1}{2},0)$ of the group *P4mm*

- (i) Determine the little groups, the k-vector stars,
 the number and the dimensions of the little-group irreps,
 the number and the dimensions of the corresponding irreps
 of the group *P4mm*
- (ii) Calculate a set of coset representatives of the decomposition of the group *P4mm* with respect to the little group of the k-vectors Γ(0,0,0) and X, and construct the corresponding full space group irreps of *P4mm*

International Tables for Crystallography (2006). Vol. A, Space group 99, pp. 382–383.



Origin on 4mm

Asymmetric unit $0 \le x \le \frac{1}{2}$; $0 \le y \le \frac{1}{2}$; $0 \le z \le 1$; $x \le y$

Symmetry operations

(1) 1	(2) 2 $0, 0, z$	(3) 4^+ 0,0,z	(4) 4^{-} 0, 0, z
(5) $m x, 0, z$	(6) $m = 0, y, z$	(7) $m x, \bar{x}, z$	(8) $m x, x, z$

General position

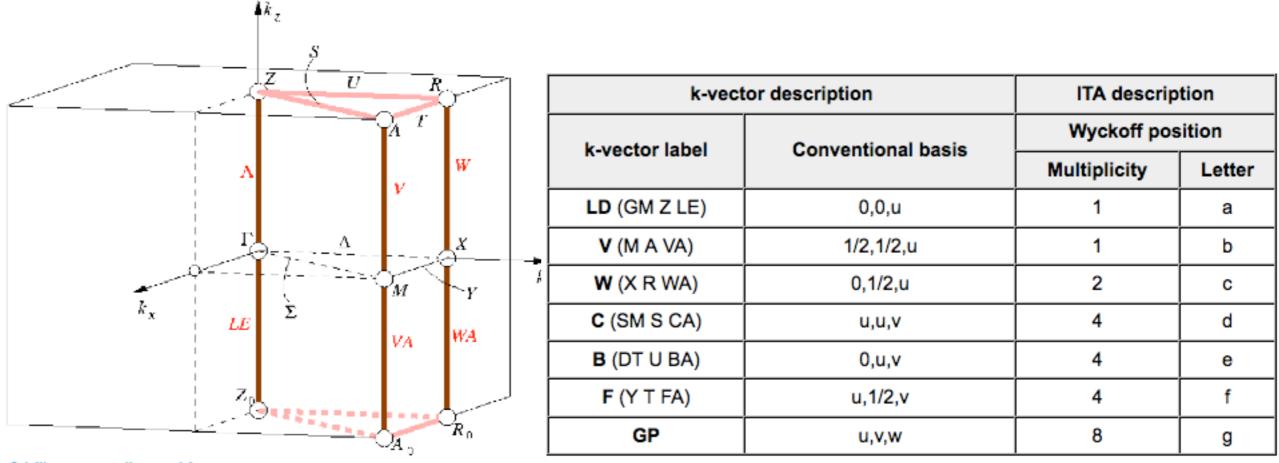
(1) x, y, z	(2) \bar{x}, \bar{y}, z	(3) \bar{y}, x, z	(4) y, \bar{x}, z
(5) x, \bar{y}, z	(6) \bar{x}, y, z	(7) \bar{y}, \bar{x}, z	(8) y, x, z

Brillouin Zone Database BilbaoCrystServer

- 5.5 Crystal class 4mm
- 5.5.1 Arithmetic crystal class 4mmP
- Fig. 5.5.1.1 Diagram for arithmetic crystal class 4mmP

 $P4mm - C_{4v}^1$ (99) to $P4_2bc - C_{4v}^8$ (106)

Reciprocal-space group (P4mm)*, No. 99 see Tab. 5.5.1.1

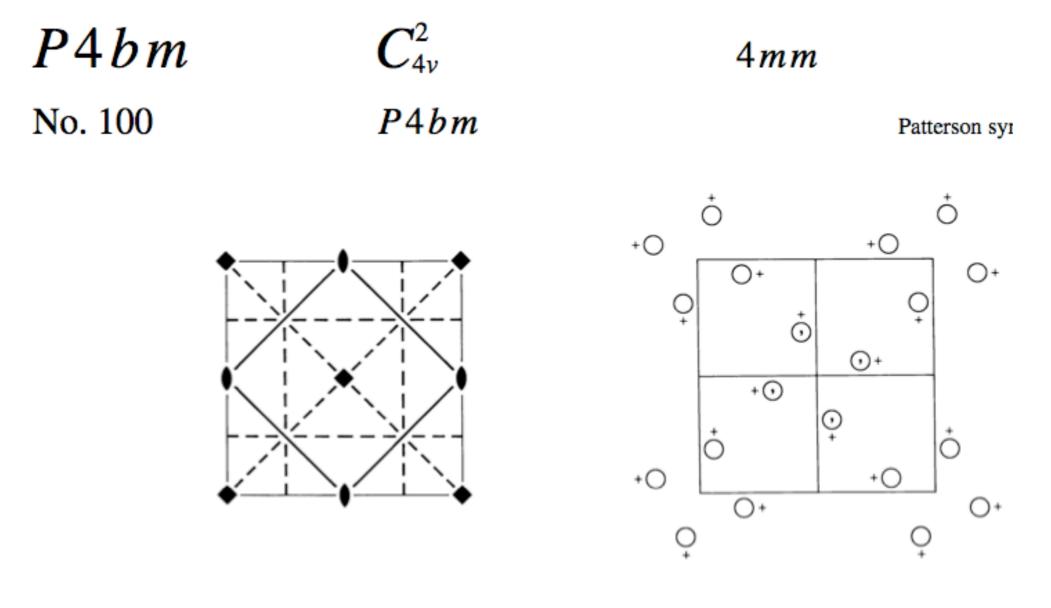


© bilbao crystallographic server

EXERCISES

Consider the k-vectors $\Gamma(0,0,0)$ and X $(0,\frac{1}{2},0)$ of the group *P4bm*

- (i) Determine the little groups, the k-vector stars,
 the number and the dimensions of the little-group irreps,
 the number and the dimensions of the corresponding irreps
 of the group *P4bm*
 - (ii) Calculate a set of coset representatives of the decomposition of the group *P4bm* with respect to the little group of the k-vectors Γ(0,0,0) and X, and construct the corresponding full space group irreps of *P4bm*



Origin on 41g

Asymmetric unit $0 \le x \le \frac{1}{2}; \quad 0 \le y \le \frac{1}{2}; \quad 0 \le z \le 1; \quad y \le \frac{1}{2} - x$

Symmetry operations

(1) 1 (2) 2 0,0,z (3) 4^+ 0,0,z (4) 4^- 0,0,z (5) $a x, \frac{1}{4}, z$ (6) $b \frac{1}{4}, y, z$ (7) $m x + \frac{1}{2}, \overline{x}, z$ (8) $g(\frac{1}{2}, \frac{1}{2}, 0) x, x, z$

General position

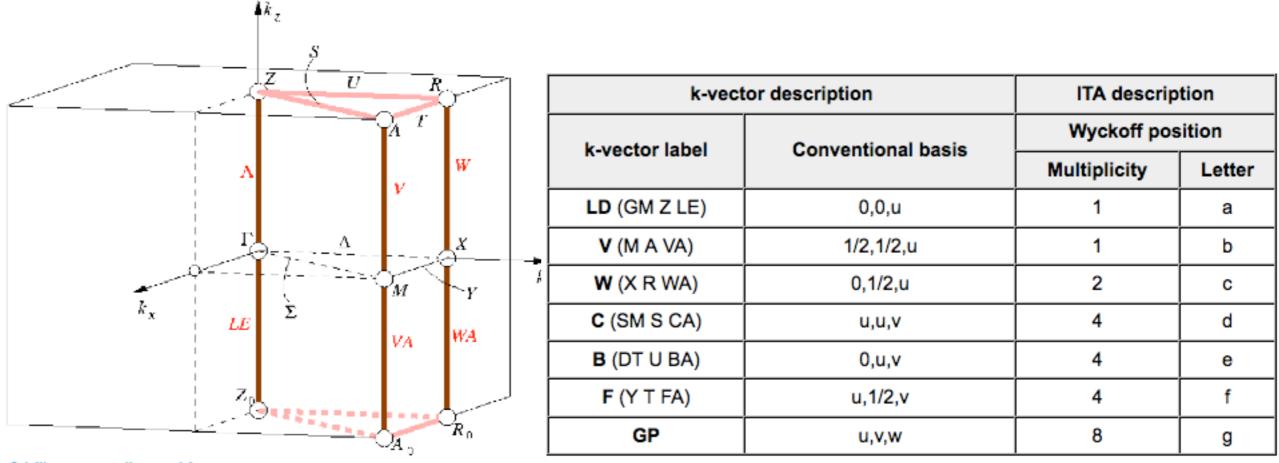
(1) x, y, z(2) \bar{x}, \bar{y}, z (3) \bar{y}, x, z (4) y, \bar{x}, z (5) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, z$ (6) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, z$ (7) $\bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, z$ (8) $y + \frac{1}{2}, x + \frac{1}{2}, z$

Brillouin Zone Database BilbaoCrystServer

- 5.5 Crystal class 4mm
- 5.5.1 Arithmetic crystal class 4mmP
- Fig. 5.5.1.1 Diagram for arithmetic crystal class 4mmP

 $P4mm - C_{4v}^1$ (99) to $P4_2bc - C_{4v}^8$ (106)

Reciprocal-space group (P4mm)*, No. 99 see Tab. 5.5.1.1



© bilbao crystallographic server

Consider a general **k**-vector of a space group G. Determine its little co-group, the **k**-vector star. How many arms has its star? How many full-group irreps will be induced and of what dimension? Write down the matrix of the fullgroup irrep of a general **k**-vector of a translation.

DOUBLE SPACE GROUPS AND THEIR REPRESENTATIONS

Double space groups

Consider the space group $G = \{(R,v)\}$ given by the coset decomposition with respect to its translation subgroup T

 $G=(E,0)T+(R_2,v_2)T + ... + (R_n,v_n)T$

The **double group** ^d**G** of **G** is defined by:

 ${}^{d}G=(1,0)T+({}^{d}I,0)T+(R_{2},v_{2})T+({}^{d}R_{2},v_{2})T+\ldots +(R_{n},v_{n})T+({}^{d}R_{n},v_{n})T$

where R_i and dR_i are the elements of the double point group ${}^d\overline{G}$ corresponding to the element R_i of the point group of G, and T is the translation subgroup of G.

Note: G ≮dG

the operations of ${}^d G$ that correspond to ${\bf G}$ do not form a closed set

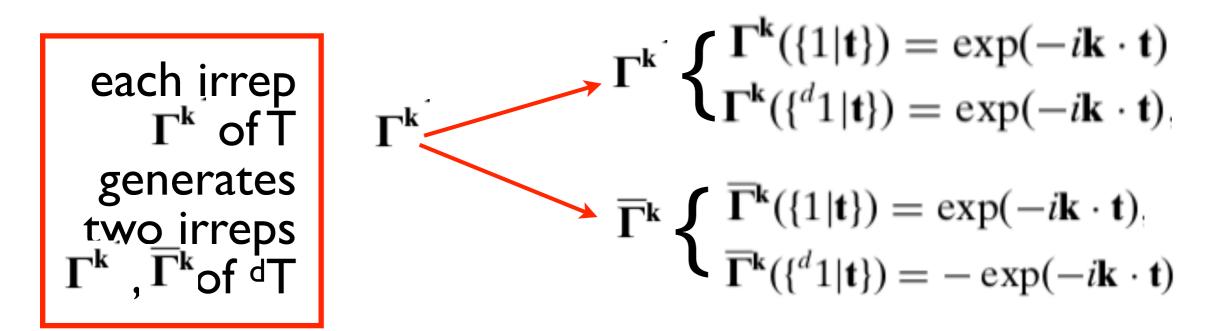
double translation subgroup ^dT:

$${}^{d}T=(1,0)T+({}^{d}I,0)T$$

 ${}^{d}G=(1,0){}^{d}T+(R_2,v_2){}^{d}T+ \dots +(R_n,v_n){}^{d}T$
 ${}^{d}T \triangleleft {}^{d}G$
T and ${}^{d}T$: abelian groups

О

irreps of the double translation subgroup ^dT: ^dT=T⊗{(1,0),(^d1,0)}



little co-group ^dG^k:

the wave vector \mathbf{k} is left invariant under d1: $\mathbf{k} = \mathbf{k}^{d}$

star of k: *k

 ${}^{d}\overline{G}{}^{k} < {}^{d}\overline{G} \longleftrightarrow \overline{G}{}^{k} < \overline{G}{}^{k} = \overline{G}{}^{k} + R_{2}{}^{d}\overline{G}{}^{k} + ... + R_{m}{}^{d}\overline{G}{}^{k} \longleftrightarrow \overline{G}{}^{k} = \overline{G}{}^{k} + R_{2}{}^{d}\overline{G}{}^{k} + ... + R_{m}{}^{d}\overline{G}{}^{k} \longleftrightarrow \overline{G}{}^{k} = \overline{G}{}^{k} + R_{2}{}^{d}\overline{G}{}^{k} + ... + R_{m}{}^{d}\overline{G}{}^{k} \longleftrightarrow \overline{G}{}^{k} = \overline{G}{}^{k} + R_{2}{}^{d}\overline{G}{}^{k} + ... + R_{m}{}^{d}\overline{G}{}^{k} \longleftrightarrow \overline{G}{}^{k} = \overline{G}{}^{k} + R_{2}{}^{d}\overline{G}{}^{k} + ... + R_{m}{}^{d}\overline{G}{}^{k} \longleftrightarrow \overline{G}{}^{k} = \overline{G}{}^{k} + R_{2}{}^{d}\overline{G}{}^{k} + ... + R_{m}{}^{d}\overline{G}{}^{k} \longleftrightarrow \overline{G}{}^{k} = \overline{G}{}^{k} + R_{2}{}^{d}\overline{G}{}^{k} + ... + R_{m}{}^{d}\overline{G}{}^{k} \longleftrightarrow \overline{G}{}^{k} = \overline{G}{}^{k} + R_{2}{}^{d}\overline{G}{}^{k} + ... + R_{m}{}^{d}\overline{G}{}^{k} \longleftrightarrow \overline{G}{}^{k} = \overline{G}{}^{k} + R_{2}{}^{d}\overline{G}{}^{k} + ... + R_{m}{}^{d}\overline{G}{}^{k} \longleftrightarrow \overline{G}{}^{k} = \overline{G}{}^{k} + R_{2}{}^{d}\overline{G}{}^{k} + ... + R_{m}{}^{d}\overline{G}{}^{k} \longleftrightarrow \overline{G}{}^{k} = \overline{G}{}^{k} + R_{2}{}^{d}\overline{G}{}^{k} + ... + R_{m}{}^{d}\overline{G}{}^{k} \longleftrightarrow \overline{G}{}^{k} = \overline{G}{}^{k} + R_{2}{}^{d}\overline{G}{}^{k} + ... + R_{m}{}^{d}\overline{G}{}^{k} \longleftrightarrow \overline{G}{}^{k} = \overline{G}{}^{k} + R_{2}{}^{d}\overline{G}{}^{k} + ... + R_{m}{}^{d}\overline{G}{}^{k} \longleftrightarrow \overline{G}{}^{k} = \overline{G}{}^{k} + R_{2}{}^{d}\overline{G}{}^{k} + ... + R_{m}{}^{d}\overline{G}{}^{k}$

$$\mathbf{k}^{*}=\{\mathbf{k}^{'}=\mathbf{k}R_{m}+\mathbf{K}, R_{m} \not\in {}^{\mathbf{d}}\overline{\mathbf{G}}^{k}\}$$

representation domain

exactly one **k**-vector from each star (one irrep from each orbit of irreps of ^dT)

Little group and Little-group irreps (Allowed irreps of the little group)

Little group ^dG^k

$${}^{d}G^{k}=\{(R|v)\in {}^{d}G|R\in {}^{d}\overline{G}^{k}\}$$

Allowed irreps of ^dG^k

$$(\mathsf{D}^{\mathsf{k},\mathsf{i}} \mathsf{d}^{\mathsf{d}}\mathsf{T}) \ni \overline{\Gamma}^{\mathsf{k}} \left\{ \begin{array}{l} \overline{\Gamma}^{\mathsf{k}}(\{1|\mathsf{t}\}) = \exp(-i\mathsf{k}\cdot\mathsf{t}), \\ \overline{\Gamma}^{\mathsf{k}}(\{^{d}1|\mathsf{t}\}) = -\exp(-i\mathsf{k}\cdot\mathsf{t}), \end{array} \right.$$

Step-wise procedure along the composition series of ${}^{d}G^{k}$

 ${}^{d}G^{k} \triangleright {}^{d}H_{1}^{k} \triangleright {}^{d}H_{2}^{k} \triangleright \cdots \triangleright {}^{d}H_{n}^{k} = {}^{d}T \qquad \left| {}^{d}H_{m-1}^{k} / {}^{d}H_{m}^{k} \right| = 2 \text{ or } 3$

Double space groups

REALITY OF SPACE-GROUP REPRESENTATIONS

Representations of Groups Basic results

classification of irreps

type I or real irrep: if D(G) is real type II or pseudoreal: if $D(G) \sim D(G)^*$ but D(G) is not real type III or complex: if $D(G) \not\sim D(G)^*$

irrep reality criterion

$$\frac{1}{|G|} \sum_{g} \eta_{1}(g^{2}) = \begin{cases} +1 \text{ type I or real} \\ -1 \text{ type II or pseudoreal} \\ 0 \text{ type III or complex} \end{cases}$$

Reality of representations induced from little groups

Consider the irrep $D^{i}(H)$ of the subgroup $H \triangleleft G$ with a little group G^{i} . The irrep $D^{Ind}(G)$ induced from a small irrep $D^{m}(G^{i})$ of the little group G^{i} is of the first, second or third kind according to:

$$\frac{q_i}{h} \sum_{\alpha} \chi^i_m(r^2_\alpha) = 1, -1, 0$$

where the sum over α is restricted so that $D^{i}(H)_{\alpha} = D^{i}(H)^{-1}$

 χ_m^i - the character of the small irrep D^m(Gⁱ) h = |G|/|H| - the index of H in G

 q_i - the order of the orbit of Dⁱ(H) in G

Reality of space-group representations induced from little groups

Consider the irrep D^k(T) of the translation subgroup T \triangleleft G with a little group G^k. The induced irrep D^{*k,j}(G) induced from a small irrep D^{k,j}(G^k) of the little group G^k is of the first, second or third kind according to:

$$\begin{array}{l} \displaystyle \frac{q_i}{h}\sum_{R_\alpha}\chi_j^k(\{R_\alpha|v_\alpha\}^2)=+1,-1,0\\ &\quad h=|P_G|\quad \text{-the index of T in G}\\ \text{-the character of the small irrep }\mathsf{D}^{\mathsf{k},\mathsf{j}}(\mathsf{G}^\mathsf{k}) &\quad q_i \text{ -the order of the star of }\mathsf{k} \text{ in G} \end{array}$$

where the sum over R_{α} is restricted to coset representatives $\{R_{\alpha}|v_{\alpha}\}$ of G with respect to T whose rotational parts send **k** into a vector equivalent to **-k**

$$\mathbf{k}R_{\alpha}\equiv-\mathbf{k}$$

 χ_{i}^{k}

Physically Irreducible Representations or 'Time-reversal Invariant' Representations

Construction of (TR)-invariant representations of the double space groups

(i) If the irrep D is (a) single valued and real or (b) double valued and pseudo-real, it is *TR invariant*.

(ii) If the irrep D is (a) single valued and pseudo-real or (b) double valued and real, the *TR-invariant* representation is the direct sum of D with itself. The label of the TR-invariant representation consists of two copies of the label of D.

(iii) If D_1 and D_2 form a pair of mutually conjugated irreps, the direct sum of both irreps is *TR invariant*. The label of the *TR-invariant* representation is the union of the labels of the two irreps.

REPRESENTATIONS OF CRYSTALLOGRAPHIC GROUPS

DATABASES AND TOOLS OF THE BILBAO CRYSTALLOGRAPHIC SERVER

REPRESENTATIONS OF CRYSTALLOGRAPHIC GROUPS

bilbao crystallographic server

	Cont	act us Abou	tus P	ublications	How to cite the server		
			Space	-group symmetry			
		Representations and Applications					
ocrystal lographic	REPRES	Space Groups Represe	ntations				
server	Representations PG	Irreducible representation	ons of the crystallogra	phic Point Groups			
ECM31-Oviedo Sat	Representations SG	Irreducible representation	ons of the Space Grou	sdr			
	Get_irreps Irreps and		reps and order parameters in a space group-subgroup phase transition				
Crystallography online: wor use and applications of the s of the Bilbao Crystallogra	Get_mirreps	Irreps and order parame subgroup phase transition		ic space group- magnetic			
20-21 August 201	DIRPRO	Direct Products of Space	e Group Irreducible R	epresentations			
News:	CORREL	Correlations relations be group-subgroup pair	etween the irreducible	representations of a			
New Article in Nature	POINT	Point Group Tables					
07/2017: Bradlyn et al. "Topolo chemistry" Nature (2017). 547,	SITESYM	Site-symmetry induced	representations of Sp	ace Groups	8		
New program: BANDRE 04/2017: Band representations	COMPATIBILITY RELATIONS	Compatibility relations b space group	etween the irreducible	e representations of a			
Band representations of Doubl	MECHANICAL REP.	Decomposition of the m	echanical representat	tion into irreps			
 New section: Double po groups 	MAGNETIC REP. 🛕	Decomposition of the m	agnetic representation	n into irreps			
 New program: DGE 04/2017: General position Space Groups New program: 	BANDREP 🛆	Band representations an Space Groups	nd Elementary Band r	epresentations of Double			

DEDDESENTATIONS DDC

Bilbao Crystallographic Server

Databases of Representations

Representations of space and point groups

wave-vector data

Brillouin zones representation domains parameter ranges POINT

character tables multiplication tables symmetrized products

Retrieval tools

Database of Representations of Point Groups

Bilbao Crystallographic Server

POINT

Point Group Tables of C_{6v}(6mm)

. . . .

Character Table										
C _{6v} (6mm)	#	1	2	3	6	m _d	m _v	functions		
Mult.	-	1	1	2	2	3	3			
A ₁	Г ₁	1	1	1	1	1	1	z,x ² +y ² ,z ²		
A ₂	۲ ₂	1	1	1	1	-1	-1	Jz		
B ₁	Г ₃	1	-1	1	-1	1	-1	•		
B ₂	Γ ₄	1	-1	1	-1	-1	1	•		
E ₂	Г ₆	2	2	-1	-1	0	0	(x ² -y ² ,xy)		
E ₁	Г ₅	2	-2	-1	1	0	0	$(x,y),(xz,yz),(J_x,J_y)$		

[List of irreducible representations in matrix form]

character tables matrix representations basis functions

group-subgroup relations

Point Subgroups

Subgroup	Order	Index
6mm	12	1
6	6	2
3m	6	2
3	3	4
mm2	4	3
2	2	6
m	2	6
1	1	12

The Rotation Group D(L)

L	2L+1	А ₁	A ₂	В ₁	B ₂	E_2	Е ₁
0	1	1	•	•	•	•	•
1	3	1	•	•	•	•	1
2	5	1	•	•	•	1	1
3	7	1	•	1	1	1	1
4	9	1	•	1	1	2	1
5	11	1	•	1	1	2	2
6	13	2	1	1	1	2	2
7	15	2	1	1	1	2	3
8	17	2	1	1	1	3	3
9	19	2	1	2	2	3	3
10	21	2	1	2	2	4	3

Database of Representations of Point Groups

Bilbao Crystallographic Server

REPRESENTATIONS PG

Irreducible representations of the Point Group 4 (No. 9)

Table of characters

(1)	(2)	(3)	C ₁	C ₂	C ₃	С
GM ₁	Α	GM ₁	1	1	1	1
GM ₂	В	GM ₂	1	1	-1	-'
GM ₃	² E	GM ₃	1	-1	i	-
GM ₄	¹ E	GM4	1	-1	-i	i

conjugacy classes
C ₁ : 1
C ₂ : 2 ₀₀₁
C ₃ : 4 ⁺ 001
C₄: 4⁻ ₀₀₁

character tables matrix representations 'reality' of irreps

pairs of conjugated irreps

 GM_3+GM_4

Matrices of the representations of the group

ter the label of the irrep indicates the "reality" of the irrep: (1) for real, (-1) for pseudoreal and (0

N	Matrix presentation	Seitz Symbol ᅇ	GM ₁ (1)	GM ₂ (1)	GM3(0)	GM4(0)
1	$\left(\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right)$	1	1	1	1	1
2	$\left(\begin{array}{rrrr} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right)$	2 ₀₀₁	1		-1	-1
3	$\left(\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$	4 ⁺ 001	1	-1	i	-i
4	$\left(\begin{array}{rrrr} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$	4°co1	1	-1	-i	i

REPRESENTATIONS OF CRYSTALLOGRAPHIC DOUBLE GROUPS

bilbao crystallographic server

		Conta	ct us About us	Publications	How to cite the serve				
	3 C			Space-group symmetry	netry				
A bilbao		Magnetic Symmetry and Applications							
servei		Group-Subgroup Relations of Space Groups							
ECM31-Oviedo S				Representations and Ap	plications				
Crystallography online: workshop on the use and applications of the structural tools of the Bilbao Crystallographic Server		Solid State Theory Applications							
20-21 August 2	018			Structure Utilitie	ae				
News:				Structure officia					
 New Article in Nature 07/2017: Bradlyn et al. "To 			Double point an	d space groups					
chemistry" Nature (2017).	DGENPOS		General positions of Double S	Space groups					
 New program: BAND 	REPRESENTATIO	NS DPG	Irreducible representations of						
04/2017: Band representat Band representations of D	REPRESENTATIO	NS DSG	Irreducible representations of						
New section: Double	DSITESYM		Site-symmetry induced repres	sentations of Double Space Grou	ips				
groups	DCOMPREL		Compatibility relations betwee	en the irreducible representations	of Double Space Groups				
 New program: I 04/2017: General program 	BANDREP		Band representations and Elementary Band representations of Double Space Groups						
Space Groups									
 New program: REPRESENTATION 									

Database of Representations of Double Point Groups

Bilbao Crystallographic Server

REPRESENTATIONS DPG

Irreducible representations of the Double Point Group 422 (No. 12)

Table of characters

(1)	(2)	(3)	C ₁	C ₂	C ₃	C4	C ₅	C ₀	C7
GM ₁	A ₁	GM ₁	1	1	1	1	1	1	1
GM3	B ₁	GM ₂	1	1	-1	1	-1	1	-1
GM2	A.2	GM ₃	1	1	1	-1	-1	1	1
GM4	B ₂	GM4	1	1	-1	-1	1	1	-1
GM5	Е	GM5	2	-2	0	0	0	2	0
GM7	Ē2	GM ₆	2	0	-√2	0	0	-2	√2
GM _S	Ē1	GM ₇	2	0	√2	0	0	-2	-\2

Lists of symmetry operations in the conjugacy classes

C₁: 1 C₂: 2₀₀₁, d_{2001} C₃: 4⁺₀₀₁, 4⁻₀₀₁ C₄: 2₀₁₀, 2₁₀₀, d_{2010} , d_{2100} C₅: 2₁₁₀, 2₁₋₁₀, d_{2110} , d_{21-10} C₆: d₁ C₇: d₄+₀₀₁, d₄-₀₀₁

character tables matrix representations 'reality' of irreps

Matrices of the representations of the group

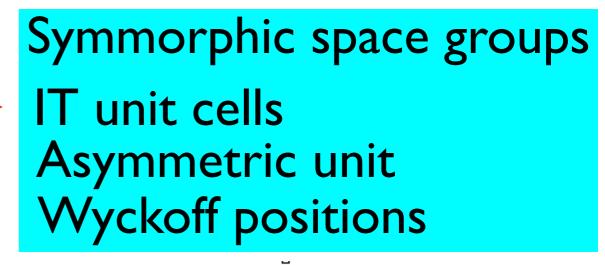
The number in parentheses after the label of the irrep indicates the "reality" of the irrep: (1) for real, (-1) for pseudoreal and (0) for complex representations.

N	Matrix presentation	Seitz Symbol 🖗	GM ₁ (1)	GM ₂ (1)	GM ₃ (1)	GM ₄ (1)	GM5(1)	GM ₆ (-1)	GM7(-1)
1	$ \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{rrrr} 1 & 0 \\ 0 & 1 \end{array}\right) $	1	1	1	1	1	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2	$ \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{ccc} -i & 0 \\ 0 & i \end{array}\right) $	2001	1	1	1	1	(-1 0) (0 -1)	(-i 0 0 i)	(-i 0) 0 i)
3	$ \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} (1-i)\sqrt{2}/2 & 0 \\ 0 & (1+i)\sqrt{2}/2 \end{pmatrix} $	4 [*] 001	1	-1	1	А	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} e^{i3\pi/4} & 0 \\ 0 & e^{i3\pi/4} \end{pmatrix}$	$\begin{pmatrix} e^{-i\pi/4} & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$
4	$ \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} (1+i)\sqrt{2}/2 & 0 \\ 0 & (1-i)\sqrt{2}/2 \end{pmatrix} $	4°001	1	-1	1	4	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	$\begin{pmatrix} e^{-i3\pi/4} & 0 \\ 0 & e^{i3\pi/4} \end{pmatrix}$	$\begin{pmatrix} e^{i\pi/4} & 0 \\ 0 & e^{-i\pi/4} \end{pmatrix}$
5	$ \left(\begin{array}{rrrr} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right) \left(\begin{array}{rrrr} 0 & -1 \\ 1 & 0 \end{array}\right) $	2 ₀₁₀	1	1	-1	4	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & e^{-i\pi/4} \\ e^{-i3\pi/4} & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & e^{i3\pi/4} \\ e^{i\pi/4} & 0 \end{pmatrix}$

Brillouin Zone Database Crystallographic Approach

Reciprocal space groups Brillouin zones **Representation domain** Wave-vector symmetry

k_1



The k-vector Types of Group 22 [F222]

ITA description

Coordinates

0,0,0

0,1/2,1/2

1/2,0,0

0.0.1/2

0,1/2,0

1/2,0,1/2

x,0,0 : 0 < x <= sm_o

 $x, 1/2, 1/2 : 0 \le x \le u_0$

 $x_{0}, 0: 1/2 - u_0 = sm_0 < x < 1/2$

 $x_{0}, 0: 0 \le x \le 1/2$

x,0,1/2 : 0 < x <= a₀

 $x, 1/2, 0: 0 \le x \le c_n$

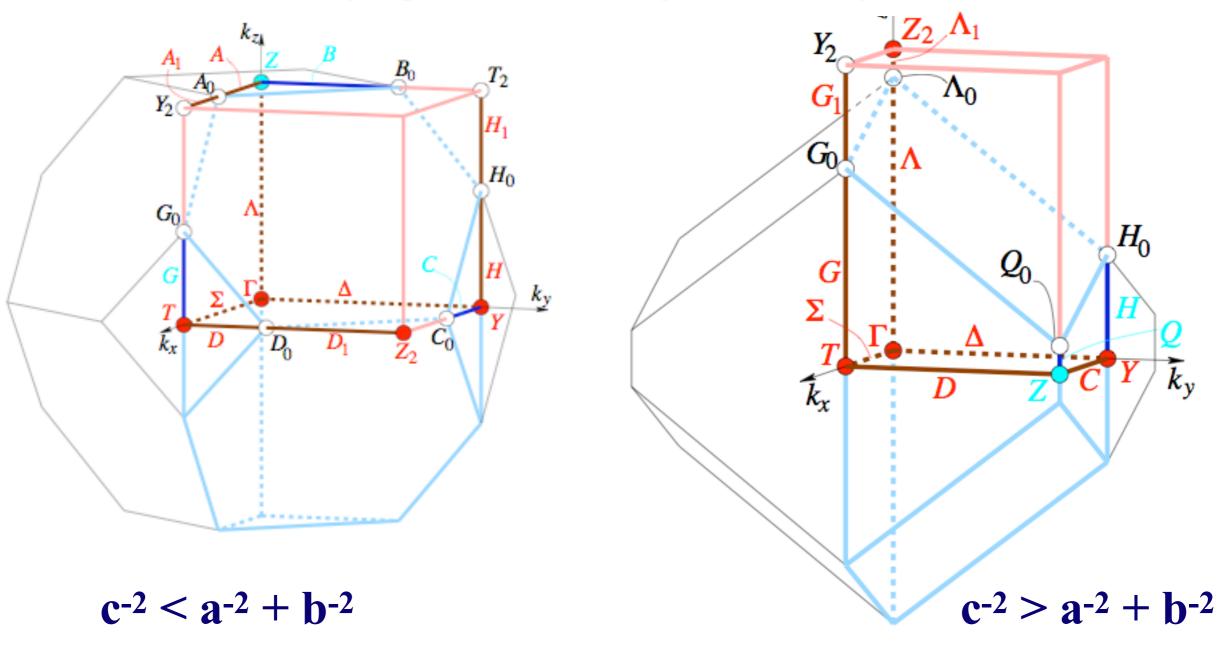
Y_2 Z_2 Λ_1		k-vector description	n	Wy	ckoff	Position
	CD	ML*	0			
G_1	Label	Primitive	Conventional-ITA		IT/	A
	GM	0,0,0	0,0,0	а	2	222
G_0 Λ	т	1,1/2,1/2	0,1,1	ь	2	222
	T~T ₂			b	2	222
	Z	1/2,1/2,0	0,0,1	С	2	222
$G \qquad Q_0 \qquad \hat{\beta}^{-0}$	Ŷ	1/2,0,1/2	0,1,0	d	2	222
Σ	Y~Y ₂			d	2	222
	SM	0,u,u ex	2u,0,0	е	4	2
$\frac{1}{k}$ D $\frac{C}{V}$ $\frac{Y}{k_y}$	U	1,1/2+u,1/2+u ex	2u,1,1	е	4	2
\vec{k}_x D \vec{z} \vec{c} \vec{k}_y	U~SM ₁ =[SM ₀ T ₂]			е	4	2
	SM+SM ₁ =[GMT ₂]			е	4	2
	А	1/2,1/2+u,u ex	2u,0,1	t	4	2
	с	1/2,u,1/2+u ex	2u,1,0	t	4	2
$c^{-2} > a^{-2} + b$	-2					

Brillouin zone Database

The k-vector Types of Group 22 [F222]

Brillouin zone

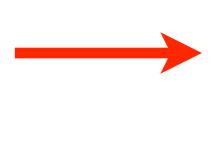
(Diagram for arithmetic crystal class 222F)

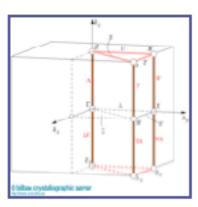


99

Problem: Representations of space groups REPRES

Space Group Number: Please, enter the sequential number of group as given in International Tables for Crystallography, Vol. A or choose it





• You can introduce the k-vector choosing one from the table:

		Chasse and	CDML			sition
	Option I	Choose one	k-vector label	Coordinates	Multiplicity	Letter
	Option I	0	LD	0,0,u	1	а
			V	1/2,1/2,u	1	b
		0	W	0, 1 /2,u	2	с
		0	С	u,u,v	4	d
k-vect	or	0	В	0,u,v	4	е
data		0	F	u, 1/2,v	4	f
•		0	GP	u,v,w	8	g
			-	•		

• Or you can introduce the **k**-vector coordinates, relative to the basis you have chosen, as any three decimal numbers or fractions:

	k vector data					
	Reciprocal basis	primitive (CDML) ‡				
Option 2	Coordinates	k _x k _y k _z				

k-vector data: option 1

Chasses and	CDM	Wyckoff position		
Choose one	k-vector label	k-vector label Coordinates		Letter
0	LD	0,0,u	1	а
0	V	1/2,1/2,u	1	b
0	W	0,1/2,u	2	с
0	С	u,u,v	4	d
0	В	0,u,v	4	е
0	F	u,1/2,v	4	f
0	GP	u,v,w	8	g

Choose one	Label	Coordinates (CDML)			
0	GM	0,0,0			
0	Z	0,0,1/2			
0	LD	0,0,u			
۲	LE	0,0,-u			

continue

INPUT Options

- Optional: If you wish to see the full-group irreps for the generator check this
- Optional: If you wish to change conventional (ITA) basis check this
 Image: Second Second

non- conventional setting		1	1	0	0
	Rotation	0 1 0 0 0 1			
	Origin shift		0	0	0

Optional: If you wish to see the irreps for arbitrary space group element check this

	Rotational part	Traslation
arbitrary element	1 0 0 0 1 0 0 0 1	0 0 0

Space-group data

REPRES: output

Space group G99, number 99 Lattice type : tP $G = \langle (W_1, w_1),, (W_k, w_k) \rangle$						\rangle
Number of generator	cs: 4			·//···/		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} & & 2 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}$	0 0 0	$\begin{array}{ccc} & & 3 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}$	0 1 0 0 0 0	$ \begin{array}{ccc} 4 \\ 0 & 0 \\ -1 & 0 \\ 0 & 1 \end{array} $	0 0 0
Number of elements	: 8 G=1	-+(W ₂	2 ,w 2)T+	.+(W _n ,	w _n)T	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} & 2 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}$	0 0 0	$\begin{array}{ccc} & 3 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}$	$\begin{array}{ccc} 0 & 0 \\ 0 & -1 \\ 0 & 0 \end{array}$	4 1 0 0 0 0 1	0 0 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} $		$\begin{array}{ccc} & & 7 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}$	0 0 0 1 0 0	8 1 0 0 0 0 1	0 0 0

k-vector and its star *k

K-vector X :
 in primitive basis : 0.000 0.500 0.000
 in standard dual basis : 0.000 0.500 0.000
The star of the k-vector has the following 2 arms :
 0.000 0.500 0.000
 0.500 0.000

Little group $G^{\times}=\{(W_i,w_i)|W_ik=k+K,(W_i,w_i)\in G\}$

The little group of the k-vector has the following 4 Little group G[×] elements as translation coset representatives :

 1
 2
 3
 4

 1
 0
 0
 -1
 0
 0
 1
 0
 0
 -1
 0
 0

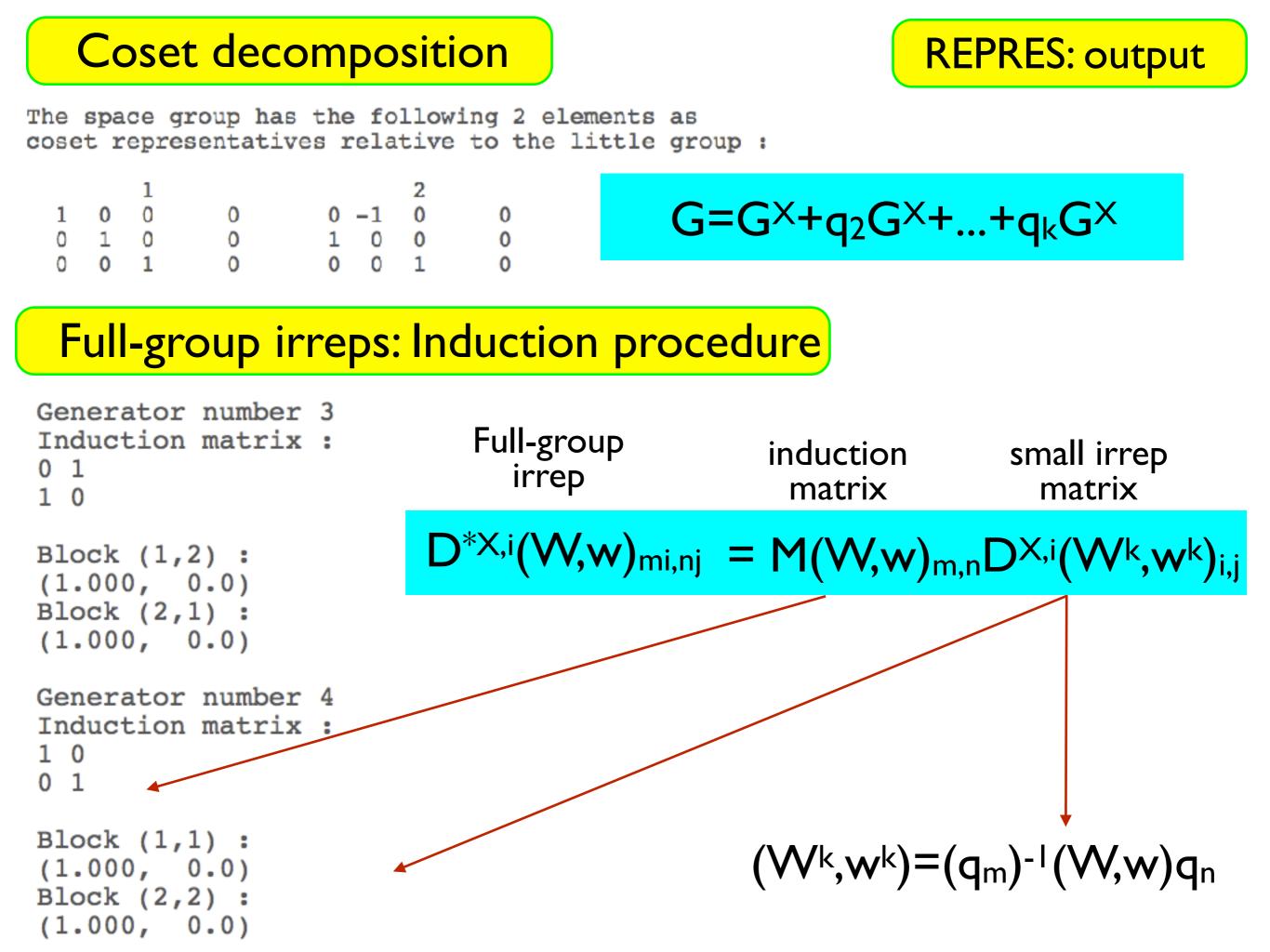
 0
 1
 0
 0
 -1
 0
 0
 -1
 0
 0
 0
 -1
 0
 0

 0
 1
 0
 0
 -1
 0
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 0
 1
 0
 0
 0
 1
 0
 0
 0
 1
 0
 0
 0
 1
 0
 0
 0
 < 0 0 0 The little group of the k-vector has 4 allowed irreps. The matrices, corresponding to all of the little group elements are : Irrep (X)(1), dimension 1 (1.000, 0.0) (1.000, 0.0) (1.000, 0.0) (1.000, 0.0) (1.000, 0.0) (1.000, 0.0) irreps DX,I Irrep (X)(2) , dimension 1

Coset decomposition REPRES: output The space group has the following 2 elements as coset representatives relative to the little group : $G=G^{X}+q_2G^{X}+...+q_kG^{X}$ 0 **Full-group irreps: Characters** $\Sigma D^{*\times,i}(W,w)_{ii}$ General position characters: Gen Pos: 1 3 (2.000, 0.0) (2.000, 0.0) (0.000, 0.0)X1 X2 (2.000, 0.0) (2.000, 0.0) (0.000, 0.0) X4 (2.000, 0.0) (2.000, 180.0) (0.000, 0.0)(2.000, 0.0) (2.000, 180.0) (0.000, 0.0)X3

Physically-irreducible irreps

Physically-irreducible representations: *X1 *X2 *X4 *X3 D*X,i ① (D*X,i)*



(a) Obtain the irreps for the space group *P4mm* for the **k**-vectors $\Gamma(0,0,0)$ and X(0,1/2,0) using the program REPRES. Compare the results with the solutions of Problem 4.1.

(b) Use the program REPRES for the derivation of the irreps of a general **k**-vector of the group *P4mm* and compare the results with the results of Problem 4.3.

Obtain the irreps for the space group P4bm for the **k**-vectors $\Gamma(0,0,0)$ and X(0,1/2,0) using the program REPRES. Compare the results with the solutions of Problem 4.2.

BILBAO CRYSTALLOGRAPHIC SERVER

Problem: Representations of space groups REPRESENTATIONS SG

Problem: Representations of double space REPRESENTATIONS DSG groups

Irreducible representations of the Space Groups

Representations: Get the irreducible representations of the Space Groups	Enter the label of the space group:	choose it
Representations provides a set of irreducible representations (or physically irreducible representations in a real basis) of a given Space Group and a wave vector.	Irreducible representations Physically irreducible representations given in a real basis	Submit Submit
Reference. For more information about this program see the following article:		
Elcoro <i>et al.</i> "Double crystallographic groups and their representations on the Bilbao Crystallographic Server" <i>J. of Appl. Cryst.</i> (2017). 50 , 1457-1477.		

doi:10.1107/S1600576717011712

If you are using this program in the preparation of an article, please cite the above reference.

Irreducible representations of the Space Groups

Representations: Get the irreducible representations of the Space Groups

Representations provides a set of irreducible representations of a given Space Group and a wave vector.

k-vector data

List of non-equivalent k-vectors of the Space Group P4mm (N. 99)

The components are referred to the conventional basis

Choose one	k-vector label	Components in the conventional basis
0	W ,X,R	(0,1/2,w)
0	LD,Z,GM	(0,0,w)
\odot	V ,M,A	(1/2,1/2,w)
\odot	C,SM,S	(u,u,w)
\odot	B ,U,DT	(0,v,w)
\odot	F,Y,T	(u,1/2,w)
\bigcirc	GP,E,D	(u,v,w)

Submit

List of non-equivalent k-vectors of the Space Group P4mm (No. 99)

The components are referred to the conventional basis

Choose one	k-vector label	Components in the conventional basis
0	W	(0,1/2,w)
0	Х	(0,1/2,0)
0	R	(0,1/2,1/2)

Irreducible representations of the Space Group P4mm (No. 99)

and wave vector k1=(0,1/2,0).

The matrices of the representations (the whole representation and the representation of the little group) with dimension smaller than 5 are given explicitly. When the erepresentation is larger than 5, only the non-zero elements are given using the following notation: (i;j)=x means that the (i,j) element of the matrix is x.

Matrices of the representations of the little group Seitz Symbol 🔞 X₁ X_2 X_3 Matrix presentation X4 $\{1|t_1,t_2,t_3\}$ e^{iπt}2 e^{iπt}2 e^{iπt}2 e^{iπt}2 Little group G^X $\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ {2₀₀₁|0,0,0} 1 1 -1 -1 $\begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ 1 0 0 {m₀₁₀|0,0,0} -1 1 -1 1 0 0 1 0 0 1 -1 0 0) 0 {m₁₀₀|0,0,0} 1 -1 1 -1

k-vector and its star *k

Allowed (small) irreps D^{X, I}

Vectors of the star

 $k_1=(0,1/2,0), k_2=(1/2,0,0)$

OUTPUT

REPRESENTATIONS SG

Matrices of the representations of the group

The number in parentheses after the label of the irrep indicates the "reality" of the irrep: (1) for real, (-1) for pseudoreal and (0) for complex representations.

	Matrix prese	ntation	Seitz Symbol 🔮	*X ₁ (1)	*X ₂ (1)	*X ₃ (1)	*X ₄ (1)
(1 0 0 1 0 0	$\begin{pmatrix} 0 & t_1 \\ 0 & t_2 \\ 1 & t_3 \end{pmatrix}$	{1 t ₁ ,t ₂ ,t ₃ }	$\begin{pmatrix} e^{i\pi t_2} & 0 \\ 0 & e^{i\pi t_1} \end{pmatrix}$	$\begin{pmatrix} e^{i\pi t_2} & 0 \\ 0 & e^{i\pi t_1} \end{pmatrix}$	$\begin{pmatrix} e^{i\pi t_2} & 0 \\ 0 & e^{i\pi t_1} \end{pmatrix}$	$\begin{pmatrix} e^{i\pi t_2} & 0 \\ 0 & e^{i\pi t_1} \end{pmatrix}$
($ \begin{array}{ccccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array} $	° °	{2 ₀₀₁ 0,0,0}	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$	$ \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right) $		$ \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right) $
(0 -1 0 1 0 0 0 0 1	° °	{4 ⁺ 0C1 0,0,0}	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	Ill-group i		$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$
(0 1 0 -1 0 0 0 0 1		Natrice	(0 1) (0 1) 1 0) 5 of the f	$ \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right) $	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	$ \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) $
(1 C O 0 -1 O 0 C 1		{m ₀₁₀ 0,0,0}	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	$ \left(\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array}\right) $
(-1 C O 0 1 O 0 C 1	°)	{m ₁₀₀ 0,0,0}	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$ \left(\begin{array}{rrr} -1 & 0 \\ 0 & 1 \end{array}\right) $