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Representations of Groups

group G {e, g2, g3, ..., gi,... ,gn}

D(G): rep of G {D(e), D(g2), D(g3),..., D(gi),... ,D(gn)}

Φ

D(gj): n x n matrices 
detD(gj)≠0

D(gi)D(gj)=D(gigj)

Examples: trivial (identity) representation

faithful representation

kernel of representation

dimension of representation



Equivalent Representations 
of Groups

equivalent representations

D(G)={D(gi), gi∈G}

Given two reps of G:

D’(G)={D’(gi), gi∈G} dim D(G)= dim D’(G)

D(G) ∼ D’(G)

D(g) = S-1D’(g)Sif ∃ S: ∀ g∈G

S: invertible matrix



EXERCISE  3.1

The cyclic group C4 of order 4 is generated by the 
element g. Two of the following three representations of 
C4 are equivalent:

D1(g)=
i 0
0 -i

D2(g)=
0 -i
i 0

D3(g)=
0 -1
1 0

Determine which of the two are equivalent and find the 
corresponding similarity matrix. Can you give an argument 
why the third representation is not equivalent? 

Hint: The determination of X such that D’(g)=X-1D(g)X is 
equivalent to determine X such that XD’(g)=D(g)X, with 
the additional condition, det X≠0.  



Representations of Groups
Basic results

number and dimensions of irreps

number of irreps = number of conjugacy classes
order of G =∑[dimDi(G)]2

great orthogonality theorem

D1(G), D2(G), irreps of G:

∑ D1(g)jk* D2(g)st =
|G|
d

δ12δjsδkt

g

dim D1(G)=d 



Characters of Representations
Basic results

character
properties

η(g) = trace[D(g)]=∑ D(g)ii

D1(G) ∼ D2(G) η1(g)= η2(g), g∈G
g1 ∼ g2 η1(g)= η2(g), g∈G

Character Table of G: r x r matrix X=X(G)

orthogonality

∑ η1(g)* η2(g) =
|G|

δ12

g

1

∑ ηp(Cj)* ηp(Ck) =
|G|

δjk

p

1
|Cj|

rows

columns



Character table of 4mmEXERCISES 3.2

Determine the characters of the irreps of 4mm and 
order them in a character table



Direct-product groups and 
their representations 

Direct-product groups

G1 G2 = {(g1,g2), g1∈G1, g2∈G2} 
(g1,g2) (g’1,g’2)= (g1g’1, g2g’2)

G1 {1,1} group of inversion

Irreps of direct-product groups

D1 x D2

G1 G2G1 G2

D1 D2

{D1(e)          x D2(e) D1(gi)          x D2(gi),..., ,...}

x

⊗

⊗

⊗

Kronecker product



Direct-product (Kronecker) 
product of matrices

=

(A x B)ik,jl =AijBkl 

tr(            )= tr(A). tr(B)A x B
dim (           ) = dim(A) . dim(B)             A x B



EXAMPLE Irreps of 222=2⊗2’

Irreps of 2 e 2
A 1 1
B 1 -1

Irreps of 222 e 2 2’ 2.2’

AxA A 1 1 1 1

AxB B2 1 -1 1 -1

BxA B1 1 1 -1 -1

BxB B3 1 -1 -1 1

+1

-1

+1

+1

Irreps of 2’e 2’
A 1 1
B 1 -1



EXERCISE 3.3 Irreps of 4/mmm=422   1x

Determine the character table of the group 
4/mmm=422⊗1 from the character tables of 
groups 422 and 1



Γp(gk) = exp(2πik)
p − 1

n
g

n
= e p = 1, ..., n

Representations of cyclic groups

G = ⟨g⟩ = {g, g2, ...gk, ...}

Examples: 1, 2, 3, 4, 6, T1



Representations of finite Abelian groups

Finite Abelian groups
cyclic groups
direct product of 
cyclic groups

{

A B
m=1,...,s; 
n=1,...r

A      B

Dp(am),p=0,1,...,s-1 Dq(bn), q=0,1,...,r-1

Dp,q(am, bn)=
 p=0,1,...,s-1   q=0,1,...,r-1

{a, a2,...,as} {b,b2,...,br} {(am,bn)}

Dp(am)      Dq(bn) x

exp(�i2⇡n)
q

r
exp(�i2⇡m)

p

s

exp(�i2⇡m)
p

s
exp(�i2⇡n)

q

r

x



Direct product of representations 

D1(G): irrep of G
{D1(e), D1(g2),... ,D1(gn)}

D2(G): irrep of G
{D2(e), D2(g2),... ,D2(gn)}

Reduction

irreps 
of G 

miDi(G)

D1 x D2D1 x D2

D1 x D2 {D1(e)          x D2(e) D1(gi)          x D2(gi),..., ,...}=

Direct-product representation

∑ ηi(g)*η1(g) =
|G|

mi
g

1 η2(g)



Direct product of representations 

D1(G): irrep of G D2(G): irrep of G

D1 x D2 {D1(e)          x D2(e) D1(gi)          x D2(gi),..., ,...}=

Direct-product representation

   V(h) {v1, v2, ..., vh}    W(k) {w1, w2, ..., wk}

Carrier space

   V(h)    W(k)x {v1w1, v2 w1, ..., viwj,..., vhwk}

Rgviwj=∑vlwm(D1      D2)(g)lmx



EXERCISES Problem 3.5

1. Is the direct-product representation E     E reducible or irreducible?x

2. If reducible, find its decomposition into irreps of 4mm. 

3. If the functions (fx, fy) form the basis of E, can you guess if 
it would be possible to construct invariants from the functions 
of the product carrier space {fx2, f1f2, f2f1, fy2}?  

4. If possible, how many invariants can be constructed, and what 
are the corresponding linear combinations of fifj? 



EXERCISES Problem 3.5

∑ |η(g)|2 =
|G| g

1 1

Irreducibility criterion 
+ magic formula

∑ ηi(g)*η(g)=
|G|

mi
g

1

miDi(G)D1 x D2~

miDi(G)S-1(D1 x D2)S =

the matrices of the 
so-called Clebsch-Gordan 
coefficients

determine the linear combinations of 
products of basis functions that 
transform according to irreps

Clebsch-Gordan coefficients



Irreps of 4mm and their multiplication table

B1   B2 ~ A2x

E   E ~ A1    A2    B1    B2x

miDi(G)D1 x D2~ η(             )(gi)= η1(gi) η2(gi)D1 x D2

∑ ηi(g)*η1(g) =
|G|

mi
g

1 η2(g)

E    E 4 4 0 0 0x

Problem 3.5 SOLUTION

INVARIANTS? HOW MANY?



miDi(G)S-1(D1 x D2)S =

Clebsch-Gordan coefficients

Problem 3.5 SOLUTION

miDi(G)(D1 x D2)S = S

Calculation of invariants

miDi(G)(D1 x D2)S1 = S1 the column(s) of 
S corresponding to 
the identity irrep

a

b

c

d

a

b

c

d

=
1

(E x E) (g)

g = 4+, mx:

a

0

0

a

S1=

invariant ～ fx2 + fy2

S1:

sufficiently to solve 
for the generators



REPRESENTATIONS 
OF 

DOUBLE GROUPS



Definition (Opechowski, 1940):
The double group dG of a group G of order |G| (which is a subgroup of the 3-dim rotational 
group O(3)), is an abstract  group of order 2|G| having the same group-multiplication table 
as the 2|G| matrices of SU(2) which correspond to the elements of G.

dG =G+EG={R} + {R} G={R} < O(3)
E rotation of 2π ER=R

number and dimensions of irreps

number of irreps = number of conjugacy classes
order of G =

great orthogonality theorem

∑[dimDi(G)]2

∑D1(g)jk* D2(g)st = |G|

d
δ12δjsδkt

η(g) = trace[D(g)]=∑ D(g)ii

D1(G) ∼ D2(G) η1(g)= η2(g), g∈G
g1 ∼ g2 η1(g)= η2(g), g∈G

character properties

Bete (1929)
Opechowski (1940)Double Groups Representations

∑ *
g
η1(g)η2(g)=|G| δ12

1

∑ηp(Cj)*ηp(Ck) =
|G|

δjk
p

1
|Cj|

orthogonality

columns

rows



Theorem 1 (Opechowski, 1940):
Each representation of a group G is also a representation of the double group dG 
where η(Eg)=+η(g); it is called a single-valued representation of G.

Theorem 2 (Opechowski, 1940):

The rest of the representations of the double group dG are called double-valued 
representation of G and are such that η(Eg)=-η(g).

Example Irreps of the group d222

222 D2 1 2z 2y 2x

A Γ1 1 1 1 1

B1 Γ2 1 1 -1 -1

B2 Γ3 1 -1 1 -1

B3 Γ4 1 -1 -1 1

d222 D2 1 2z,2z 2y,2y 2x,2x E

A Γ1 1 1 1 1 1
B1 Γ2 1 1 -1 -1 1
B2 Γ3 1 -1 1 -1 1
B3 Γ4 1 -1 -1 1 1

E Γ5 2 0 0 0 -2

notation of double-valued irreps: Bethe: Γk, Γk+1,…
Mulliken-Herzberg: Ek, Fk, Gk…

[2], [4], [6]

Double Groups Representations



We can either talk about single-valued and double-valued 
representations of a point or space group G or alternatively 
one can simply talk about the representations of the double 
point (or space) group dG.

In the second case they are ordinary single-valued irreducible 
representations of dG for which are valid all basic properties 
and results.  

Note on terminology

Bradley & Cracknell, 1972



EXERCISE 3.4

Determine the character 
table of the double group
 d422 starting from the 
character table of the 
group 422

∑ |η(g)|2 =|G| g
1

1

Hints:

Irreducibility criterion

Distribute the elements of d422 into conjugacy classes

Determine the number and dimensions of the irreps of d422?



Double Groups

self-conjugated operations

OPECHOWSKI RULES

{C̄k
n, C̄k�1

n } i↵ {Ck
n, Ck�1

n )}, n > 2

{C2(n), C̄2(n)} i↵ 9 C2(n
0) or m(n0) with n ? n0

{Cn}, {C̄n} i↵, n 6= 2

{E}, {Ē}, {1̄}, {1̄Ē}

{m(n), m̄(n)} i↵ 9 C2(n
0) or m(n0) with n ? n0

To each class of G           one or two classes of dG 

Symbols of ‘double-group’ symmetry operations 

E = d1
R = d1R= dR

Classes of conjugate elements



SUBDUCED 
 REPRESENTATIONS



Subduction

SUBDUCED REPRESENTATION

group G
{e, g2, g3, ..., gi,... ,gn}

subgroup H<G
{e, h2, h3, ...,hm}

D(G): irrep of G
{D(e), D(g2), D(g3),..., D(gi),... ,D(gn)}

subduced rep of H<G
{D(e), D(h2), D(h3), ...,D(hm)}

irreps 
of H 

{D(G)  H}:

{D(G)  H}
S-1{D(G) H}S

miDi(H)



SUBDUCED REPRESENTATION



EXERCISES Problem 3.5



EXERCISES Problem 3.5



INDUCED 
 REPRESENTATIONS



INDUCED REPRESENTATION



INDUCED REPRESENTATION

Induction matrix M(g)
monomial matrix

1 0 00

00

000

1

1

1...
...

...
...

... 0

...

...

...
gr

g2

g1

g1 g2 gr

M(g)mn= 
1    if  gm-1ggn=h
0    if  gm-1ggn∉H{

Induced representation DInd(g)
super-monomial matrix

g1 g2 ... gr

g1

g2 ...

...
gr ...

DJ(h) 0

0

0 0
00 0

DJ(h)

DJ(h)

DJ(h) 00 0
... ...

...



EXERCISES Problem 3.6

Construct the general form of the matrices of a 
representation of G induced by the irreps of a 
subgroup H<G of index 2. 



Determine representations of 4mm induced 
from the irreps of {1,mxz}.  

Notation:
m01=mxz     m10=myz

m1-1=mxx     m11=mx-x

Problem 3.7



Decompostion of 4mm with respect to the 
subgroup {1,mxz}

Step 1. 

Step 2. Construction of the induction matrix

M(g)mn= 
1    if  gm-1ggn=h
0    if  gm-1ggn∉H{

Hint to Problem 3.7 



REPRESENTATIONS 
OF A GROUP 

IN TERMS 
OF THE IRREPS OF AN 

INVARIANT SUBGROUP



Conjugate representations

H= {e, h2, h3, ..., hi,... ,hn}

{D(e), D(h2),... ,D(hn)}

conjugate representation

∆

G H:

DS(H)={DS(g-1hig), hi∈H, g∈G,g∉H}

{D(g-1eg), D(g-1h2g), ... ,D(g-1hng)}
conjugate irrep

{D(e), D(h’2),... ,D(h’n)}DS(H)=



Conjugate representations

properties



Conjugate representations and orbits



EXERCISES Problem 3.8

Consider the irreps 
of the group 4 and 

distribute them into 
orbits with respect to 

the group 4mm

x

y

mxz

myz

mxx

mxx

myz

mxz

mxx̄

mxx̄ Multiplication table of 4mm



Consider the irreps of the group 222 
and distribute them into orbits with 
respect to the group 422

EXERCISES Problem 3.9 



LITTLE GROUP AND  
LITTLE-GROUP

 REPRESENTATIONS

allowed irrep or allowable irrep or small irrep 
NOTE: terminology



EXERCISES Problem 3.8 (cont)

Determine the little groups and the corresponding 
allowed irreps for all irreps of the group 4

 Consider the group-subgroup pair

∆

4mm 4



Determine the little groups and the corresponding 
allowed irreps for all irreps of the group 222.

EXERCISES Problem 3.9 (cont)

 Consider the group-subgroup pair∆

422 222

Point Group Tables of D4(422)



INDUCTION THEOREM



Procedure for the construction of 
Irreducible Representations

Construct the irreps of the space group G 
starting from the irreps of one of its normal 
subgroups H     G

1. Construct all irreps of H
2. Distribute the irreps of H into orbits under G and           
select a representative
3. Determine the little group for each representative

4. Find the small (allowed) irreps of the  little group 

5. Construct the irreps of G by induction from the  
the small (allowed) irreps of the little group 

Method:



Special cases: Subgroups of index 2 

G=H ∪ qH, q∉H, q∈G

∆

G H: |G|/|H|=2

1. Orbits of Ds(H) with respect to G

(i) O(Ds(H))={Ds(H), Ds(H)q≠Ds(H)}
(ii) O(Ds(H))={Ds(H)}

1I. Little group and allowed irreps

(i) O(Ds(H))={Ds(H), Ds(H)q}
L=H, Ds(H): allowed 

(ii) O(Ds(H))={Ds(H)}
L=G, D(G)↓H∋Ds(H): allowed 



III. Induction procedure:

Induction matrix

G=H ∪ qH

Matrices of the induced irrep

h∈H

q∉H, q∈G

(i) O(Ds(H))={Ds(H), Ds(H)q}



(ii) O(Ds(H))={Ds(H)}

DInd(G)+

DInd(G)-
Ds(H)

DInd(G)+

DInd(G)-

dim             =dim Ds(H)

dim             =dim Ds(H)

DInd(G)+ DInd(G)-
DInd(h)=Ds(h)+ DInd(h)=Ds(h)
DInd(q)=U

U-1Ds(h)U=Ds(h)q

U2=DInd(q2)=Ds(h’), q2=h’∈H

DInd(q)=-U
-
-+

±

III. Induction procedure: G=H ∪ qH



Induction procedure for normal subgroups of 
index 2 and 3





3. Construction of irreps of G



-orbits of length 2



3. Construction of irreps of G



-orbits of length 3



POINT-GROUP IRREPS 
BY INDUCTION 

PROCEDURE



Generation of point groups

Set of generators of a group is a set of group 
elements such that each element of the group can be 
obtained as an ordered product of the generators  

g1 - identity
g2, g3, ... - generate the rest of elements

Composition series: 1 Z2 Z3 ... G
index 2 or 3

Crystallographic groups are solvable groups

W=(gh)    * (gh-1)  * ...  * (g2)  * g1
kh kh-1 k2



Example Generation of the group of the square

Composition series: 1 2 4 4mm
Step 1: 

            1 ={1}

Step 2: 
     2 = {1} + 2z {1}

Step 3: 
     4 ={1,2} + 4z {1,2}

Step 4: 
     4mm = 4 + mx 4

[2] [2] [2]

2z 4z mx



Generation of sub-cubic point groups



Generation of sub-hexagonal point groups



Problem 3.10

Generate the symmetry operations of the 
group 4/mmm following its composition 
series. 

Generate the symmetry operations of the 
group 3m following its composition series. 



Example: Determination of the irreps of the group C4(4)

∆

C4 C2

∆

C1composition series for C4:

Irreps of C2



Irreps of C4:   C4 = C2 ∪ aC2, a= 4

Multiplication table of C4

C4 is Abelian: q-1a2q=a2

Irreps of C2 (relative to C4): selfconjugate

e a2

A 1 1

B 1 -1

{A}, {B} 



Construction of irreps of C4



Construction of irreps of C4



EXERCISES Problem 3.11

By the `induction procedure', derive the irreps of 4mm 
from those of group 4

Multiplication table of 4mm



EXERCISES Problem 3.12

By the `induction procedure', derive: ; 

the irreps of the group 1 ⊗ G  from those 
of the group G;

applying the results from (a) write down 
the irreps of 4/mmm starting from the 
irreps of 422 

(a)

(b)



REALITY 
OF 

REPRESENTATIONS



Representations of Groups
Basic results

classification of irreps

type I or real irrep:

 irrep reality criterion

type II or pseudoreal:

if D(G) is real
if D(G) ~ D(G)* but D(G) is not real

type III or complex:

∑ η1(g2) =
|G| g

1 +1 type I or real 
-1 type II or pseudoreal
 0  type III or complex

if D(G)≁D(G)*

﹛



Reality of representations 
induced from little groups

Consider the irrep Di(H) of the subgroup H    G with a little 
group Gi. The irrep DInd(G) induced from a small irrep Dm(Gi) of 
the little group Gi is of the first, second or third kind according to: 

qi
h

X

↵

�i
m(r2↵) = 1,�1, 0

where the sum over     is restricted so that ↵ D
i(H)↵ = D

i(H)�1

�i
m - the character of the small irrep Dm(Gi)

h = |G|/|H| - the index of H in G
qi - the order of the orbit of Di(H) in G



Example: 2dim irrep of 4mm

Step 1.

Step 2.

(D(i))mxz (4z) = D(i)(4�1
z )

Orbits of irreps

{D(3), D(4)}    ---   orbit of conjugate irreps



E 4 2 4-1

D3 1 -i -1 i

(D3)-1 1 i -1 -i

rα=E (D3)α 1 -i -1 i

rα=mxz (D3)α 1 i -1 -i

qi
h
�D3

(m2
xz) =

2

2
�D3

(E) = +1

the 2dim irrep of 4mm induced by D3 of 4 is real

Example: 2dim irrep of 4mm


