Topological Matter School 2018

Lecture Course GROUP THEORY AND TOPOLOGY

Donostia - San Sebastian

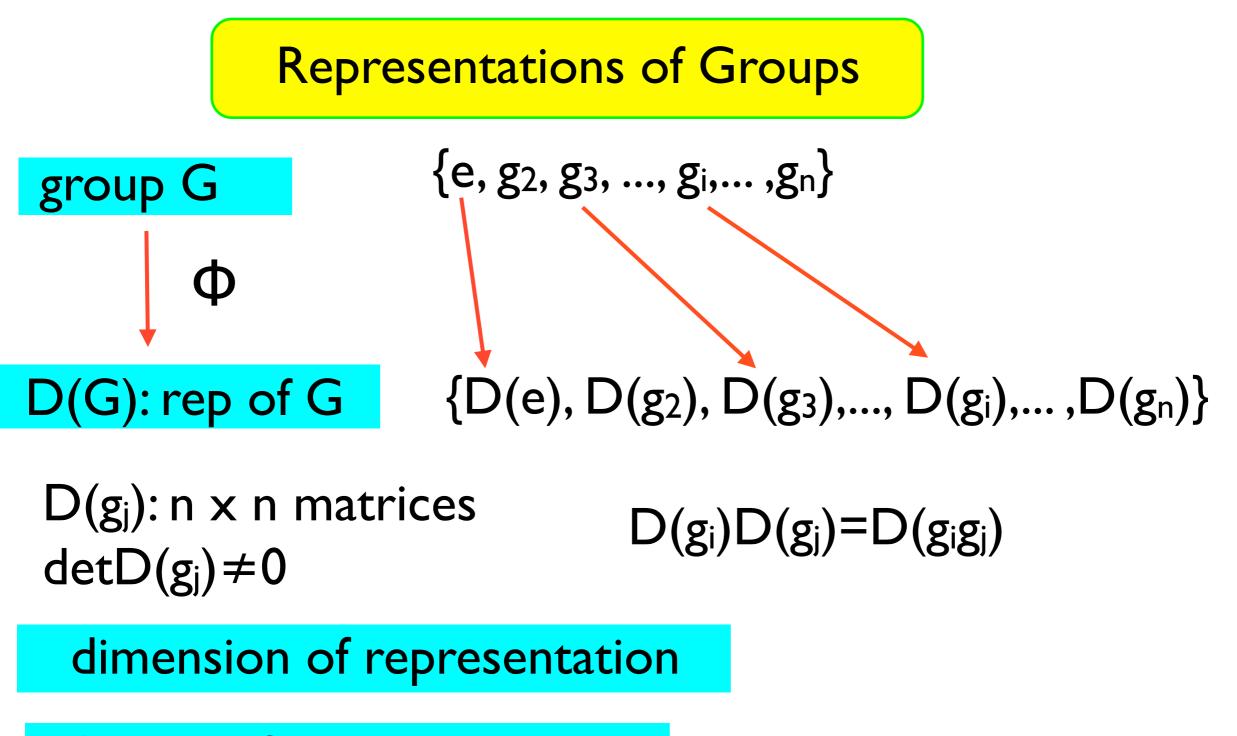
23-26 August 2018

REPRESENTATIONS OF CRYSTALLOGRAPHIC GROUPS

FURTHER DEVELOPMENTS

Bradley & Cracknell.

The Mathematical Theory of Symmetry in Solids (1972)



kernel of representation

Examples:

trivial (identity) representation faithful representation Equivalent Representations of Groups

Given two reps of G:

 $D(G) = \{D(g_i), g_i \in G\}$ $D'(G) = \{D'(g_i), g_i \in G\}$

dim $D(G) = \dim D'(G)$

equivalent representations

 $D(G) \sim D'(G)$

if $\exists S: D(g) = S^{-1}D'(g)S \quad \forall g \in G$ S: invertible matrix

EXERCISE 3.1

The cyclic group C_4 of order 4 is generated by the element g. Two of the following three representations of C_4 are equivalent:

$$D_{I}(g) = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \qquad D_{2}(g) = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \qquad D_{3}(g) = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}$$

Determine which of the two are equivalent and find the corresponding similarity matrix. Can you give an argument why the third representation is not equivalent?

Hint: The determination of X such that $D'(g)=X^{-1}D(g)X$ is equivalent to determine X such that XD'(g)=D(g)X, with the additional condition, det $X \neq 0$.

Representations of Groups Basic results

number and dimensions of irreps

number of irreps = number of conjugacy classes order of G = $\sum [\dim D_i(G)]^2$

great orthogonality theorem

rreps of G:
$$D_1(G), D_2(G),$$

 $\dim D_1(G)=d$
 $\sum_{g} D_1(g)_{jk}^* D_2(g)_{st} = \frac{|G|}{d} \delta_{12}\delta_{js}\delta_{kt}$

Characters of Representations Basic results

character properties

$$\eta(g) = \operatorname{trace}[D(g)] = \sum D(g)_{ii}$$
$$D_1(G) \sim D_2(G) \longleftrightarrow \eta_1(g) = \eta_2(g), g \in G$$
$$g_1 \sim g_2 \longleftrightarrow \eta_1(g) = \eta_2(g), g \in G$$

 $1 2_{z} 2_{y}$

1

1

-1

-1

1

-1

1

-1

1

1

1

1

 2_{x}

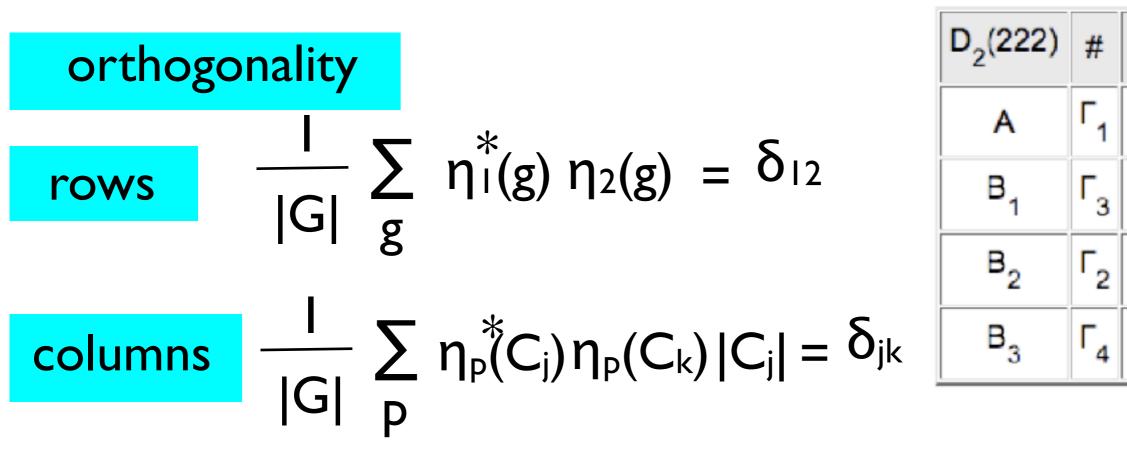
1

-1

-1

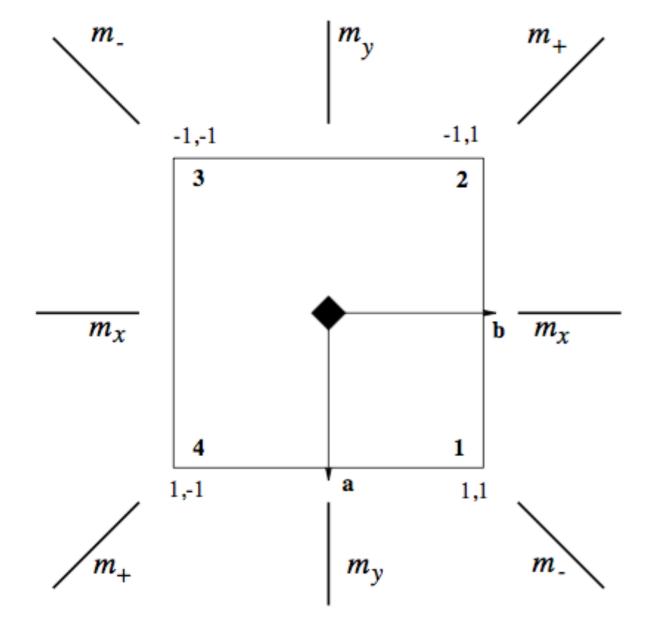
1

Character Table of G:
$$\mathbf{r} \times \mathbf{r}$$
 matrix $\mathbf{X} = \mathbf{X}(G)$



Character table of 4mm

Determine the characters of the irreps of 4mm and order them in a character table



EXERCISES 3.2

Multiplication table of 4mm

Direct-product groups and their representations

Direct-product groups

$$G_{1} \otimes G_{2} = \{(g_{1},g_{2}), g_{1} \in G_{1}, g_{2} \in G_{2}\} \\ (g_{1},g_{2}) (g'_{1},g'_{2}) = (g_{1}g'_{1}, g_{2}g'_{2})$$

 $G_{I} \otimes \{I,\overline{I}\}$ group of inversion

Irreps of direct-product groups

Direct-product (Kronecker) product of matrices

dim

tr(

$$(A \otimes B)_{ik,jl} = A_{ij}B_{kl}$$

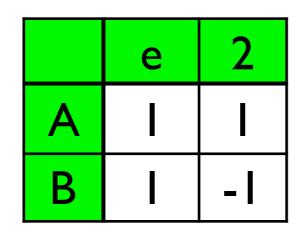
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$

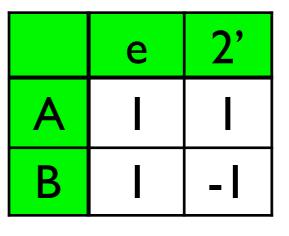
$$A \otimes B = \begin{pmatrix} 0 & B & (-1) & B \\ 1 & B & 0 & B \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(A \otimes B) = dim(A) \cdot dim(B)$$

$$(A \otimes B) = tr(A) \cdot tr(B)$$

Irreps of 2





Irreps of 2'

Irreps of 222

		е	2	2'	2.2'
AxA	Α	Ι	I	I	I
AxB	B ₂	Ι	-1	I	-1
BxA	Bı			-1	-1
BxB	B ₃	I	-1	-1	I

Irreps of $4/mm = 422 \times \overline{I}$

Determine the character table of the group $4/mm=422\otimes T$ from the character tables of groups 422 and T

D ₄ (422)	#	1	2	4	2 _h	2 _{h'}
Mult.	-	1	1	2	2	2
A ₁	Γ ₁	1	1	1	1	1
A ₂	Γ ₃	1	1	1	-1	-1
B ₁	۲ ₂	1	1	-1	1	-1
B ₂	Γ ₄	1	1	-1	-1	1
E	Г ₅	2	-2	0	0	0

C _i (-1)	#	1	-1
Ag	г ₁ +	1	1
A _u	Г ₁ -	1	-1

Representations of cyclic groups

$$G = \langle g \rangle = \{g, g^2, \dots g^k, \dots\}$$
$$g^n = e$$

$$\Gamma^{p}(g^{k}) = exp(2\pi ik)\frac{p-1}{n}$$
$$p = 1, ..., n$$

Point Group Tables of $C_6(6)$

Character Table

Point Group Tables of $C_4(4)$

	Character Table										
C ₄ (4)	#	1	2	4+	4-	functions					
Α	Г ₁	1	1	1	1	z,x^2+y^2,z^2,J_z					
В	Г ₂	1	1	-1	-1	x ² -y ² ,xy					
E	Г ₄ Г ₃	1 1	-1 -1	-1j 1j	1j -1j	(x,y),(xz,yz),(J _x ,J _y)					

C ₆ (6)	#	Е	6+	3+	2	3-	6 ⁻	functions			
Α	Г ₁	1	1	1	1	1	1	z,x^2+y^2,z^2,J_z			
В	Γ ₄	1	-1	1	-1	1	-1	•			
E ₂	Г ₃ Г ₂	1 1	w w ²	w² w	1	w w²	w² w	(x ² -y ² ,xy)			
E ₁	Г ₅ Г ₆	1 1	-w ² -w	w w²	-1 -1	w² w	-w -w ²	(x,y),(xz,yz),(J _x ,J _y)			

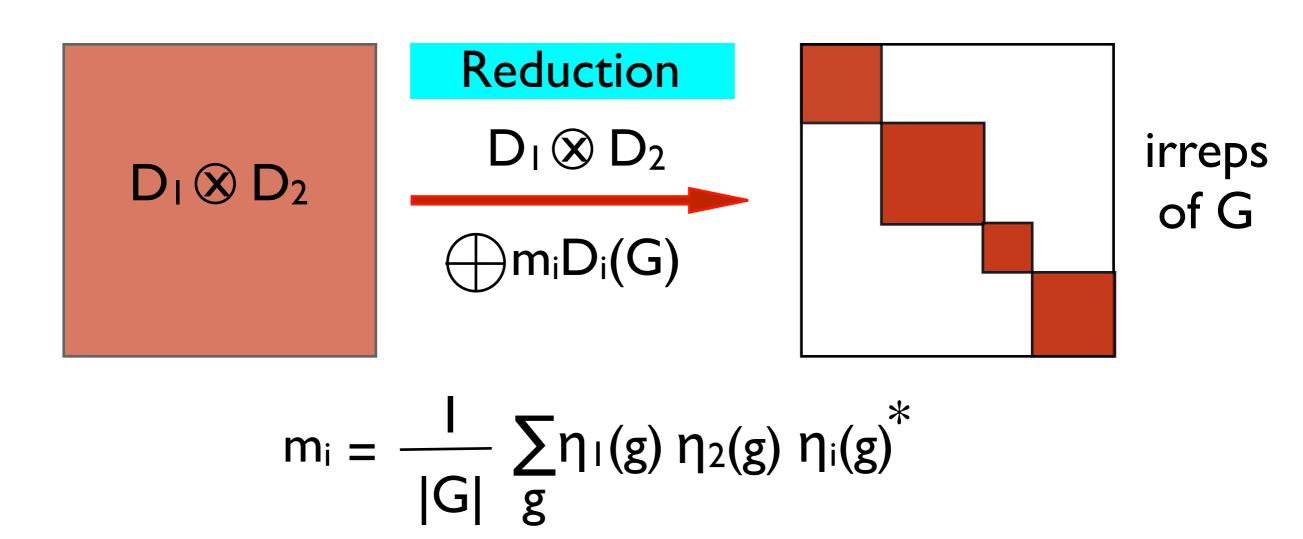
Examples: 1, 2, 3, 4, 6, T₁

Representations of finite Abelian groups

Direct product of representations

 $\begin{array}{ll} D_1(G): irrep \ of \ G \\ \\ \{D_1(e), D_1(g_2), \dots, D_1(g_n)\} \\ \end{array} \begin{array}{ll} D_2(G): irrep \ of \ G \\ \\ \{D_2(e), D_2(g_2), \dots, D_2(g_n)\} \end{array} \end{array}$

Direct-product representation $D_1 \otimes D_2 = \{D_1(e) \otimes D_2(e), ..., D_1(g_i) \otimes D_2(g_i), ...\}$



Direct product of representations

$$D_1(G)$$
: irrep of G $D_2(G)$: irrep of G $V^{(h)}$ { $v_1, v_2, ..., v_h$ } $W^{(k)}$ { $w_1, w_2, ..., w_k$ }Direct-product representation

Direct product representation

$$D_1 \otimes D_2 = \{ D_1(e) \otimes D_2(e), ..., D_1(g_i) \otimes D_2(g_i), ... \}$$

Carrier space

 $\mathbf{V}^{(h)} \bigotimes \mathbf{W}^{(k)} \left\{ \mathbf{v}_{1} \mathbf{w}_{1}, \mathbf{v}_{2} \mathbf{w}_{1}, ..., \mathbf{v}_{i} \mathbf{w}_{j}, ..., \mathbf{v}_{h} \mathbf{w}_{k} \right\}$ $R_{g} \mathbf{v}_{i} \mathbf{w}_{j} = \sum \mathbf{v}_{l} \mathbf{w}_{m} (\mathsf{D}_{l} \bigotimes \mathsf{D}_{2}) (g)_{lm}$

Let E be the 2-dimensional irrep of 4mm:

$$\mathbf{4} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}; \mathbf{m}_x = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

1. Is the direct-product representation $\mathbf{E} \otimes \mathbf{E}$ reducible or irreducible?

2. If reducible, find its decomposition into irreps of 4mm.

3. If the functions (\mathbf{f}_x , \mathbf{f}_y) form the basis of **E**, can you guess if it would be possible to construct invariants from the functions of the product carrier space { \mathbf{f}_x^2 , $\mathbf{f}_1\mathbf{f}_2$, $\mathbf{f}_2\mathbf{f}_1$, \mathbf{f}_y^2 }?

4. If possible, how many invariants can be constructed, and what are the corresponding linear combinations of $f_i f_j$?

EXERCISES

Point Group Tables of C_{4v}(4mm)

Click here to get more detailed information on the symmetry operations

C _{4v} (4mm)	#	1	2	4	m _x	md	functions
Mult.	-	1	1	2	2	2	
A ₁	Г1	1	1	1	1	1	z,x ² +y ² ,z ²
A ₂	۲ <mark>2</mark>	1	1	1	-1	-1	Jz
B ₁	Гз	1	1	-1	1	-1	x ² -y ²
B ₂	Г4	1	1	-1	-1	1	ху
E	Г <u>5</u>	2	-2	0	0	0	$(x,y),(xz,yz),(J_X,J_Y)$

Character Table of the group C4v(4mm) *

Problem 3.5

Irreducibility criterion + magic formula

$$\frac{1}{|G|} \sum_{g} |\eta(g)|^2 = 1$$
$$m_i = \frac{1}{|G|} \sum_{g} \eta(g) \eta_i(g)^*$$

 $D_1 \otimes D_2 \sim (+) m_i D_i(G)$

Clebsch-Gordan coefficients

$$S^{-1}(D_1 \otimes D_2)S = \bigoplus m_i D_i(G)$$

the matrices of the so-called Clebsch-Gordan coefficients

determine the linear combinations of products of basis functions that transform according to irreps

Problem 3.5

SOLUTION

Irreps of **4mm** and their multiplication table

$$\begin{split} D_1 \otimes D_2 &\sim \bigoplus m_i D_i(G) \quad \eta(D_1 \otimes D_2)(g_i) = \eta_1(g_i) \ \eta_2(g_i) \\ m_i &= \frac{I}{|G|} \sum_g \eta_1(g) \ \eta_2(g) \ \eta_i(g)^* \end{split}$$

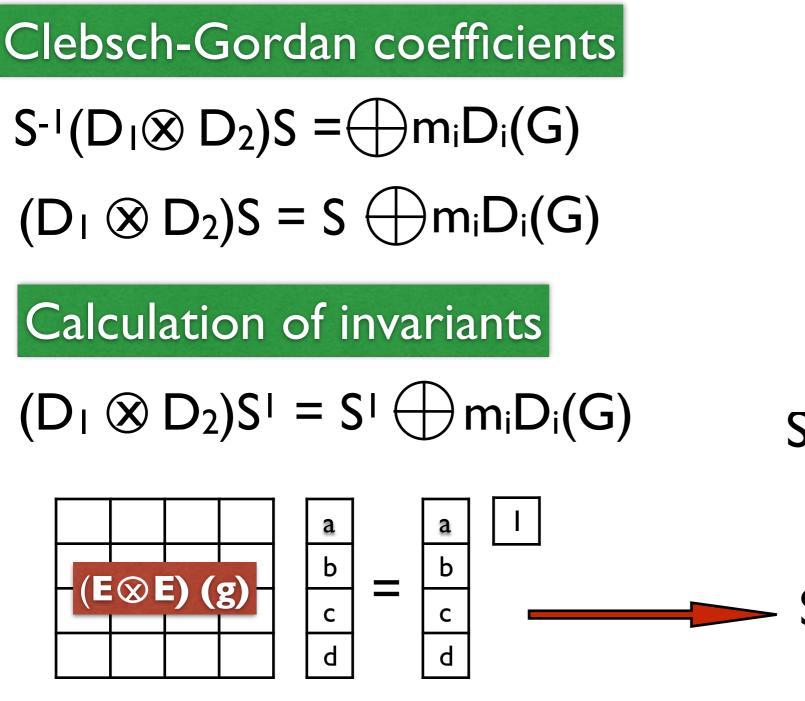
C _{4v} (4mm)	#	1	2	4	$m_{\rm x}$	m _d
Mult.	-	1	1	2	2	2
A ₁	۲ ₁	1	1	1	1	1
A ₂	Г ₂	1	1	1	-1	-1
B ₁	۲ ₃	1	1	-1	1	-1
B ₂	Γ ₄	1	1	-1	-1	1
E	Г ₅	2	-2	0	0	0
E⊗E		4	4	0	0	0

multiplication rabie										
C _{4v} (4mm)	A ₁	A ₂	В ₁	B ₂	E					
A ₁	A ₁	A ₂	В ₁	B ₂	E					
A ₂	•	A ₁	B ₂	B ₁	E					
B ₁	•	•	A ₁	A ₂	E					
B ₂	•	•	•	A ₁	E					
E	•	•	•	·	A ₁ +A ₂ +B ₁ +B ₂					

 $B_1 \otimes B_2 \sim A_2$

INVARIANTS? HOW MANY?

Problem 3.5



SI: S corresponding to the identity irrep

sufficiently to solve for the generators $\mathbf{g} = 4^+, m_x^{\pm}$

invariant $\sim f_x^2 + f_y^2$

0

а

REPRESENTATIONS OF DOUBLE GROUPS

Double Groups Representations

Bete (1929) Opechowski (1940)

Definition (Opechowski, 1940):

The double group ${}^{d}\mathbf{G}$ of a group \mathbf{G} of order $|\mathbf{G}|$ (which is a subgroup of the 3-dim rotational group $\mathbf{O}(3)$), is an abstract group of order $2|\mathbf{G}|$ having the same group-multiplication table as the $2|\mathbf{G}|$ matrices of $\mathbf{SU}(2)$ which correspond to the elements of \mathbf{G} .

$${}^{d}\mathbf{G} = \mathbf{G} + \overline{\mathbf{E}}\mathbf{G} = \{\mathbf{R}\} + \{\overline{\mathbf{R}}\}$$

 $G = \{R\} < O(3)$ E rotation of 2π ER=R

number and dimensions of irreps

number of irreps = number of conjugacy classes order of $G = \sum [dimD_i(G)]^2$

$$\begin{array}{ll} \mbox{great orthogonality theorem} & \sum D_1(g)_{jk}^* D_2(g)_{st} = \frac{|G|}{d} \ \delta_{12} \delta_{js} \delta_{kt} \\ \mbox{character properties} & \eta(g) = \mbox{trace}[D(g)] = \sum D(g)_{ii} \\ D_1(G) \sim D_2(G) \longleftrightarrow \eta_1(g) = \eta_2(g), g \in G \\ g_1 \sim g_2 \qquad \longleftrightarrow \ \eta_1(g) = \eta_2(g), g \in G \\ g_1 \sim g_2 \qquad \longleftrightarrow \ \eta_1(g) = \eta_2(g), g \in G \\ \mbox{orthogonality} & \mbox{rows} \qquad \left| \frac{I}{|G|} \sum_g \eta_1(g)^* \eta_2(g) = \delta_{12} \\ \hline \mbox{columns} \qquad \left| \frac{I}{|G|} \sum_p \eta_p(C_j)^* \eta_p(C_k) \ |C_j| = \delta_{jk} \end{array} \right|$$

Double Groups Representations

Theorem 1 (Opechowski, 1940):

Each representation of a group **G** is also a representation of the double group ${}^{d}\mathbf{G}$ where $\eta(\overline{E}g)=+\eta(g)$; it is called a single-valued representation of **G**.

Theorem 2 (Opechowski, 1940):

The rest of the representations of the double group ${}^{d}\mathbf{G}$ are called double-valued representation of **G** and are such that $\eta(\overline{E}g)=-\eta(g)$.

notation of double-valued irreps:

Bethe: Γ_k , Γ_{k+1} ,... Mulliken-Herzberg: \overline{E}_k , \overline{F}_k , \overline{G}_k ... [2], [4], [6]

Example

Irreps of the group d222

222	D ₂	1	2 z	2 y	2 _x
A	Γ_1	1	1	1	1
B ₁	Γ2	1	1	-1	-1
B ₂	Гз	1	-1	1	-1
B ₃	Γ4	1	-1	-1	1

^d 222	D ₂	1	$2_z, \overline{2}_z$	$2_y, \overline{2}_y$	$2_x, \overline{2}_x$	Ē
A	Γ_1	1	1	1	1	1
B ₁	Γ2	1	1	-1	-1	1
B ₂	Γ ₃	1	-1	1	-1	1
B ₃	Γ4	1	-1	-1	1	1
E	Γ ₅	2	0	0	0	-2

Note on terminology

We can either talk about single-valued and double-valued representations of a point or space group G or alternatively one can simply talk about the representations of the double point (or space) group ^dG.

In the second case they are ordinary single-valued irreducible representations of ^dG for which are valid all basic properties and results.

Bradley & Cracknell, 1972

Determine the character table of the double group d422 starting from the character table of the group 422

D ₄ (422)	#	1	2	4	2 _h	2 _{h'}
Mult.	-	1	1	2	2	2
A ₁	Γ ₁	1	1	1	1	1
A ₂	Γ ₃	1	1	1	-1	-1
B ₁	۲ ₂	1	1	-1	1	-1
B ₂	Γ ₄	1	1	-1	-1	1
E	Г ₅	2	-2	0	0	0

Hints:

Distribute the elements of d422 into conjugacy classes

Determine the number and dimensions of the irreps of d422?

Irreducibility criterion $\frac{|I|}{|G|} \sum_{g} |\eta(g)|^2 = |I|$

Double Groups

OPECHOWSKI RULES

To each class of G \longrightarrow one or two classes of ^dG

self-conjugated operations

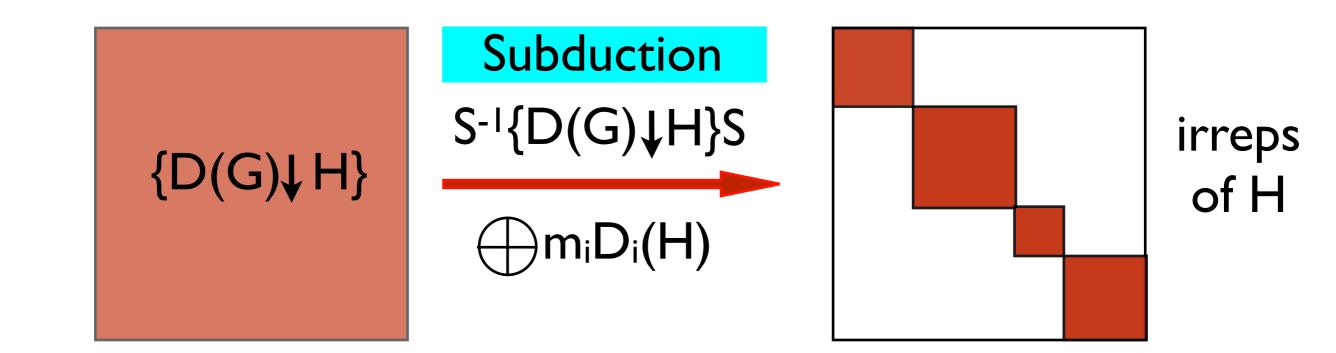
 $\{E\}, \ \{\bar{E}\}, \ \{\bar{1}\}, \{\bar{1}\bar{E}\}$ $\{C_n\}, \ \{\bar{C}_n\} \text{ iff, } n \neq 2$ $\{C_2(n), \ \bar{C}_2(n)\} \text{ iff } \exists \ C_2(n') \text{ or } m(n') \text{ with } n \perp n'$ $\{m(n), \ \bar{m}(n)\} \text{ iff } \exists \ C_2(n') \text{ or } m(n') \text{ with } n \perp n'$ $\{\bar{C}_n^k, \ \bar{C}_n^{k-1}\} \text{ iff } \{C_n^k, \ C_n^{k-1}\}, \ n > 2$

Symbols of 'double-group' symmetry operations

 $\overline{E} = d1$ $\overline{R} = d1R = dR$ SUBDUCED REPRESENTATIONS

SUBDUCED REPRESENTATION

D(G): irrep of G {D(e), D(g₂), D(g₃),..., D(g_i),..., D(g_n)} {D(e), D(h₂), D(h₃), ..., D(h_m)} {D(G) H}: subduced rep of H<G



SUBDUCED REPRESENTATION

 $\{\mathbf{D}^r(g_i)\} = \mathbf{D}^r(\mathcal{G}) \downarrow \mathcal{H}$: reducible in general

1. Decomposition of $\mathbf{D}^{r}(\mathcal{G}) \downarrow \mathcal{H}$ $\mathbf{D}^{r}(\mathcal{G}) \downarrow \mathcal{H} \sim \oplus m_{i} \mathbf{D}^{i}(h), h \in \mathcal{H}.$

$$\chi(\mathbf{D}^r(\mathcal{G}\downarrow\mathcal{H})) = \sum_i m_i \chi(\mathbf{D}^i(\mathcal{H}))$$

$$m_i = \frac{1}{|\mathcal{H}|} \sum_{h} \chi^r(h) \chi^i(h)^*$$

2. Subduction matrix

$$\mathbf{S}^{-1}(\mathbf{D}^r \downarrow \mathcal{H})(h) \mathbf{S} = \oplus m_i \mathbf{D}^i(h), h \in \mathcal{H}.$$

EXERCISES

Let E be the 2-dimensional irrep of 4mm:

$$\mathbf{4} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}; \mathbf{m}_x = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

- 1. Is the subduced representation $\textbf{E} \downarrow \textbf{4}$ reducible or irreducible ?
- If reducible, decompose it into irreps of 4.
- 3. Determine the corresponding subduction matrix **S**, defined by $\mathbf{S}^{-1}(\mathbf{E} \downarrow \mathbf{4})(h) \mathbf{S} = \oplus m_i \mathbf{D}^i(h), h \in 4.$

EXERCISES

Problem 3.5

Point Group Tables of C_{4v}(4mm)

Character Table

C _{4v} (4mm)	#	1	2	4	m _x	m _d	functions
Mult.	-	1	1	2	2	2	•
A ₁	Г ₁	1	1	1	1	1	z,x^2+y^2,z^2
A ₂	Г ₂	1	1	1	-1	-1	Jz
B ₁	Г ₃	1	1	-1	1	-1	x ² -y ²
B ₂	Γ ₄	1	1	-1	-1	1	ху
E	Г ₅	2	-2	0	0	0	$(x,y),(xz,yz),(J_x,J_y)$

Point Group Tables of $C_4(4)$

Character Table C₄(4) # 2 4+ 1 functions 4⁻ z,x^2+y^2,z^2,J_z $[\Gamma_1]$ 1 1 1 1 А Γ₂ x²-y²,xy -1 1 1 -1 в Г₄ -1 -1j 1j (x,y),(xz,yz),(J_x,J_y) 1 Е Г₃ 1

INDUCED REPRESENTATIONS

INDUCED REPRESENTATION

Group-subgroup pair $\mathcal{G} > \mathcal{H}$; Irrep $\mathbf{D}^{j}(\mathcal{H})$ $\mathcal{G} = \mathcal{H} \cup g_{2}\mathcal{H} \cup \ldots \cup g_{r}\mathcal{H}$

Induced rep of \mathcal{G} : The set of $(r d \times r d)$ matrices

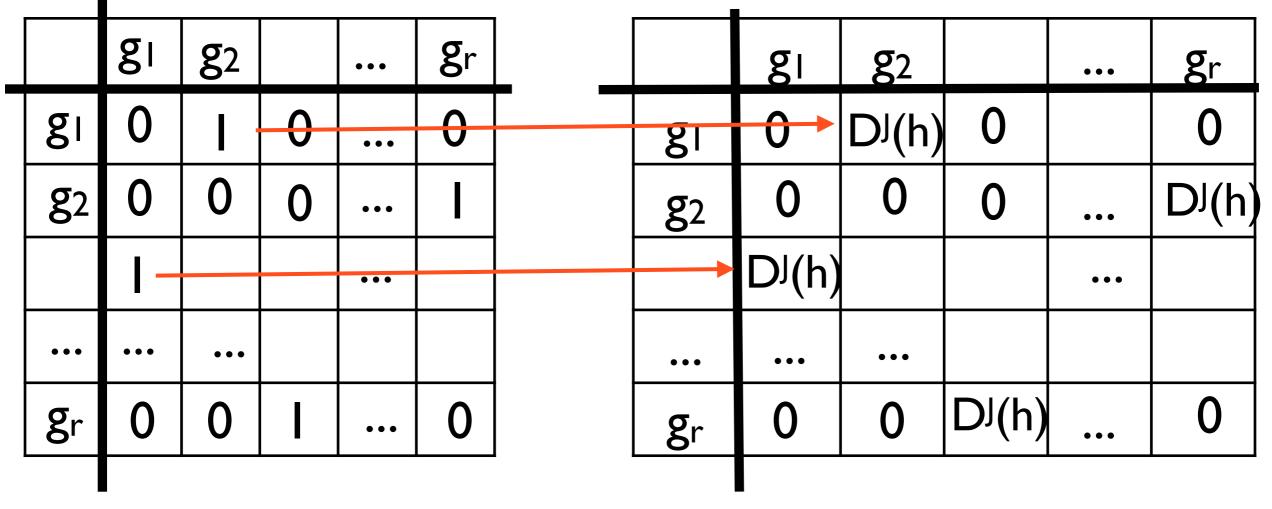
$$\mathbf{D}^{Ind}(g)_{mt,ns} = \begin{cases} \mathbf{D}^{j} (g_m^{-1} g g_n)_{t,s} & \text{if } g_m^{-1} g g_n = h \\ 0 & \text{if } g_m^{-1} g g_n \notin \mathcal{H} \end{cases}$$

 $\mathbf{D}^{Ind}(g)_{mt,ns} = \mathbf{M}(g)_{m,n} \mathbf{D}^{j}(h)_{t,s}$

INDUCED REPRESENTATION

Induction matrix M(g) monomial matrix

Induced representation D^{Ind}(g) super-monomial matrix

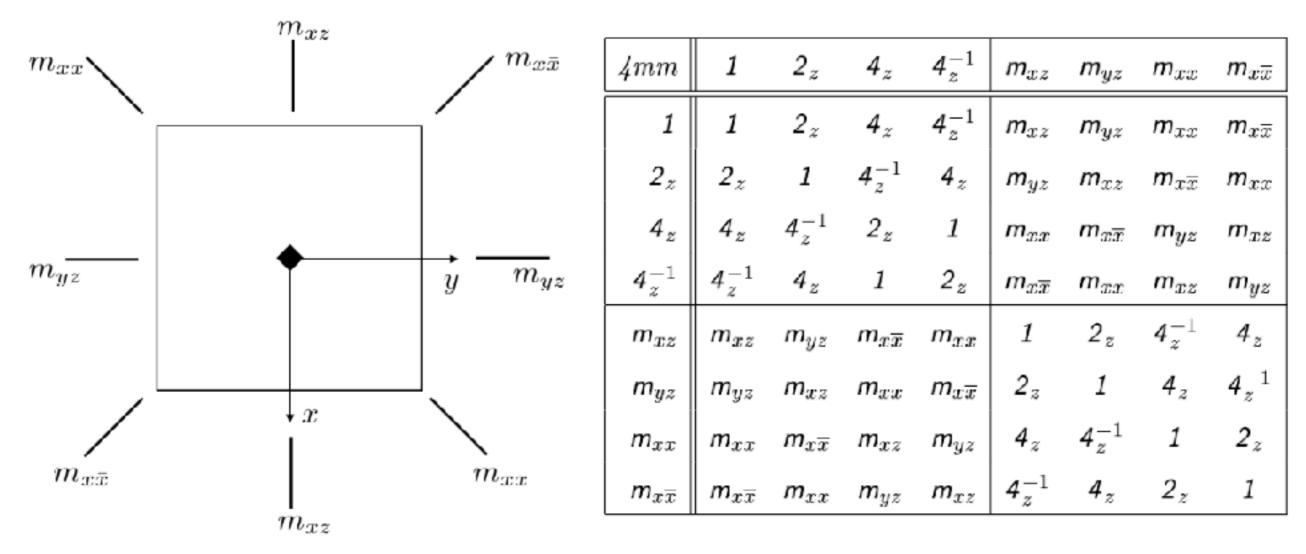


 $M(g)_{mn} = \begin{cases} I & \text{if } g_m^{-1}gg_n = h \\ 0 & \text{if } g_m^{-1}gg_n \notin H \end{cases}$

Construct the general form of the matrices of a representation of G induced by the irreps of a subgroup H<G of index 2.

Problem 3.7

Determine representations of 4mm induced from the irreps of $\{I, m_{xz}\}$.



Notation: $m_{01}=m_{xz}$ $m_{10}=m_{yz}$ $m_{1-1}=m_{xx}$ $m_{11}=m_{x-x}$ Step I. Decomposition of 4mm with respect to the subgroup $\{I, m_{xz}\}$

Step 2. Construction of the induction matrix

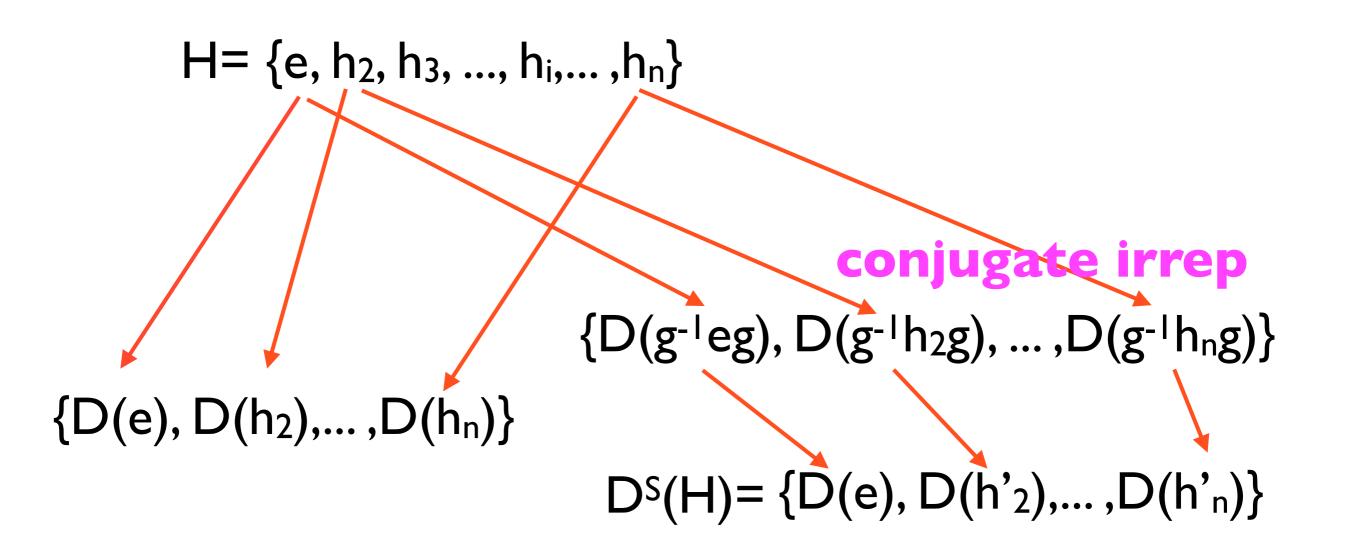
 $M(g)_{mn} = \begin{cases} I & \text{if } g_m^{-1}gg_n = h \\ 0 & \text{if } g_m^{-1}gg_n \notin H \end{cases}$

g	g_m	g_m^{-1}	$g_m^{-1}g$	g_n	h =	$M_{mn} \neq 0$
					$\boldsymbol{g}_m^{-1} \boldsymbol{g} \boldsymbol{g}_n$	
1	1	1	1	1	1	M_{11}
	m_{yz}	m_{yz}	m_{yz}	m_{yz}	1	M_{22}

REPRESENTATIONS OF A GROUP IN TERMS OF THE IRREPS OF AN INVARIANT SUBGROUP **Conjugate representations**

conjugate representation G ⊳H:

 $D^{s}(H)=\{D^{s}(g^{-1}h_{i}g), h_{i}\in H, g\in G, g\not\in H\}$



Conjugate representations

properties

CONJUGATE REPRESENTATION $(\mathbf{D}^{s}(\mathcal{H}))_{g} = \{\mathbf{D}^{s}(g^{-1} h g), h \in \mathcal{H}\},\$ where $g \in \mathcal{G}, g \notin \mathcal{H}$

- 1. $dim(\mathbf{D}^{s}(\mathcal{H})) = dim((\mathbf{D}^{s}(\mathcal{H}))_{g});$
- 2. $(\mathbf{D}^{s}(\mathcal{H}))_{g}$ is an irrep if $\mathbf{D}^{s}(\mathcal{H})$ is.
- 3. Equivalent or nonequivalent conjugate rep

$$(\mathbf{D}^{s}(\mathcal{H}))_{g} \left\{ egin{array}{c} \sim \mathbf{D}^{s}(\mathcal{H}) \
ot \sim \mathbf{D}^{s}(\mathcal{H}) \end{array}
ight.$$

Conjugate representations and orbits

Group-normal subgroup pair $\mathcal{G} \triangleright \mathcal{H}$ $\mathcal{G} = \mathcal{H} \cup g_2 \mathcal{H} \cup \ldots \cup g_r \mathcal{H}$

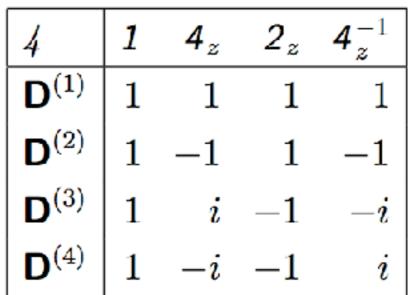
ORBIT OF CONJUGATE REPS $O(\mathbf{D}^{s}(\mathcal{H})) = \{\mathbf{D}^{s}(\mathcal{H}), (\mathbf{D}^{s}(\mathcal{H}))_{g_{2}}, ..., (\mathbf{D}^{s}(\mathcal{H}))_{g_{r}}\},\$ where $g \in \mathcal{G}$

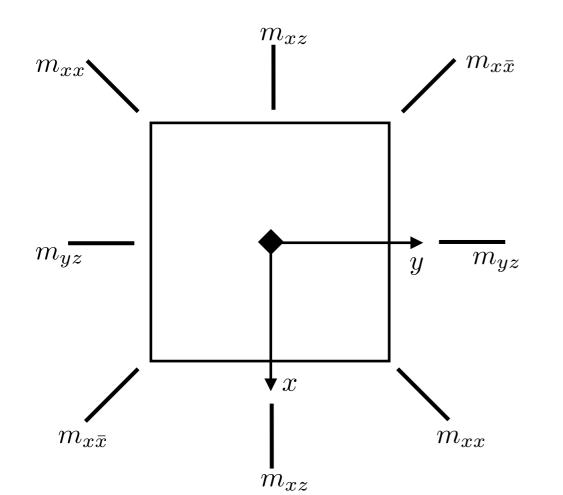
EXERCISES

Problem 3.8

Irreps of 4

Consider the irreps of the group 4 and distribute them into orbits with respect to the group 4mm





Multiplication table of 4mm

4mm	1	2 _z	4 <i>.</i> .	4_z^{-1}	m _{xz}	m_{yz}	m _{xx}	$m_{x\overline{x}}$
1	1	2_z	4 _z	4_z^{-1}	m_{xz}	m_{yz}	m_{xx}	m _{xx}
2_z	2_z	1	4_{z}^{-1}	4_{z}	m_{yz}	m_{xz}	$m_{x\overline{x}}$	m_{xx}
4 _z	4 =	${\pmb{4}}_{z}^{-1}$	2 _z	1	m_{xx}	$m_{x\overline{x}}$	m_{yz}	m _{xz}
4_z^{-1}	$\begin{array}{c} 4_z \\ 4_z^{-1} \\ 4_z^{-1} \end{array}$	4 _z	1	2_z	m_{xx}	m_{xx}	m_{xz}	m_{yz}
m_{xz}	m _{xz}	m_{yz}	$m_{x\overline{x}}$	m_{xx}	1	2_z	4_z^{-1}	4 _z
m_{yz}	m_{yz}	m_{xz}	m_{xx}	<i>m_{aa}</i>	2,	1	4 _z	4_{z}^{-1}
m_{xx}	m _{xx}	$m_{x\overline{x}}$	m_{xz}	m_{yz}	4_z	${\bf 4}_{z}^{-1}$	1	2 _z
$m_{x\overline{x}}$	$m_{x\overline{x}}$	m_{xx}	m_{yz}	m_{xz}	$\pmb{4}_z^{-1}$	4_{z}	2 _z	4_z 4_z^{-1} 2_z 1

Consider the irreps of the group 222 and distribute them into orbits with respect to the group 422

Point Group Tables of D₂(222)

	Character Table										
D ₂ (222)	#	# 1 2 _z 2 _y 2 _x functions									
Α	Γ ₁	1	1	1	1	x ² ,y ² ,z ²					
B ₁	Г ₃	1	1	-1	-1	z,xy,J					
B ₂	Г ₂	1	-1	1	-1	y,xz,J _y					
B ₃	Г ₄	1	-1	-1	1	x,yz,J _x					

ALLOWED IRREP OF THE LITTLE GROUP: $\mathbf{D}^{j}(\mathcal{G}^{s}(\mathbf{D}^{s}(\mathcal{H}))) \downarrow \mathcal{H} \ni \mathbf{D}^{s}(\mathcal{H})$

Group-normal subgroup pair $\mathcal{G} \triangleright \mathcal{H}$; Irrep $\mathbf{D}^{s}(\mathcal{H})$ $\mathcal{G}^{s} \equiv \mathcal{G}^{s}(\mathbf{D}^{s}(\mathcal{H})) = \{g \in \mathcal{G} : (\mathbf{D}^{s}(\mathcal{H}))_{g} \sim \mathbf{D}^{s}(\mathcal{H})\}$ $\mathcal{G} > \mathcal{G}^{s} \triangleright \mathcal{H}.$

LITTLE GROUP \mathcal{G}^s :

LITTLE GROUP AND LITTLE-GROUP REPRESENTATIONS

NOTE: terminology

allowed irrep or allowable irrep or small irrep

EXERCISES

Problem 3.8 (cont)

Consider the group-subgroup pair

4mm ⊳ 4

Point Group Tables of C_{4v}(4mm)

	Character Table											
C _{4v} (4mm)	4mm) # 1 2 4 m _x m _d functions											
Mult.	-	1	1	2	2	2						
A ₁	Г ₁	1	1	1	1	1	z,x^2+y^2,z^2					
A ₂	Г ₂	1	1	1	-1	-1	Jz					
B ₁	Г ₃	1	1	-1	1	-1	x ² -y ²					
B ₂	Γ ₄	1	1	-1	-1	1	ху					
E	Г ₅	2	-2	0	0	0	$(x,y),(xz,yz),(J_x,J_y)$					

Point Group Tables of $C_{4}(4)$

	Character Table										
C ₄ (4)	#	1	2	4+	4-	functions					
Α	Г ₁	1	1	1	1	z,x^2+y^2,z^2,J_z					
В	Γ2	1	1	-1	-1	x ² -y ² ,xy					
E	Г ₄ Г ₃	1 1	-1 -1	-1j 1j	1j -1j	(x,y),(xz,yz),(J _x ,J _y)					

Determine the little groups and the corresponding allowed irreps for all irreps of the group 4

EXERCISES

Problem 3.9 (cont)

Consider the group-subgroup pair 422 ▷ 222

Point Group Tables of D₄(422)

Point Group Tables of D₂(222)

Character Table of the group D4(422) *

D4(422)	#	1	2	4	2 _h	2 _h '	functions
Mult.	-	1	1	2	2	2	•
A ₁	٢1	1	1	1	1	1	x ² +y ² ,z ²
A ₂	٢2	1	1	1	-1	-1	z,J _Z
B ₁	Гз	1	1	-1	1	-1	x ² -y ²
B ₂	Г4	1	1	-1	-1	1	ху
E	Г5	2	-2	0	0	0	$(x,y),(xz,yz),(J_X,J_Y)$

Character Table

D ₂ (222)	#	1	2 _z	2 _y	2 _x	functions
Α	Γ ₁	1	1	1	1	x ² ,y ² ,z ²
B ₁	Г ₃	1	1	-1	-1	z,xy,J _z
B ₂	Г ₂	1	-1	1	-1	y,xz,J _y
B ₃	Γ ₄	1	-1	-1	1	x,yz,J _x

Determine the little groups and the corresponding allowed irreps for all irreps of the group 222.

INDUCTION THEOREM

 Let D^j(H) be an irrep from the orbit O(D^j(H)) with the little group G^j(D^j(H)) relative to G. Then each allowed irrep D^m(G^j(D^j(H))) of G^j(D^j(H)) induces an irrep D^{Ind}(G), whose subduction to H yields the orbit O(D^j(H)).

 All irreps of G are obtained exactly once if the procedure described in 1 is applied on one irrep D^j(H) from each orbit O(D^j(H)) of irreps of H relative to G. Procedure for the construction of Irreducible Representations

Method: Construct the irreps of the space group G starting from the irreps of one of its normal subgroups $H \triangleleft G$

I. Construct all irreps of H

2. Distribute the irreps of H into orbits under G and select a representative

3. Determine the little group for each representative

4. Find the small (allowed) irreps of the little group

5. Construct the irreps of G by induction from the the small (allowed) irreps of the little group

Special cases: Subgroups of index 2

$G \, \triangleright \, H: \ |G|/|H|=2 \quad G=H \ \cup \ qH, q \not\in H, q \in G$

I. Orbits of D^s(H) with respect to G

(i) $O(D^{s}(H)) = \{D^{s}(H), D^{s}(H)_{q} \neq D^{s}(H)\}$ (ii) $O(D^{s}(H)) = \{D^{s}(H)\}$

II. Little group and allowed irreps

(i) $O(D^{s}(H)) = \{D^{s}(H), D^{s}(H)_{q}\}$ L=H, D^s(H): allowed

L=G, D(G) \downarrow H \ni D^s(H): allowed

(ii) $O(D^{s}(H)) = \{D^{s}(H)\}$

III. Induction procedure: $G=H \cup qH$ (i) $O(D^{s}(H))=\{D^{s}(H), D^{s}(H)_{q}\}$

Induction matrix

g	g_i	$g_i^{-1}g$	g_j	$g_i^{-1} g g_j$	$M_{ij} \neq 0$
h	е	h	е	e h e = h	M_{11}
	q	q^{-1} h	q	$q^{-1} h q = (h)_q$	M_{22}
q	е	q	q	q^2	M_{12}
	q	$q^{-1} q = e$	е	е	M_{21}

Matrices of the induced irrep

$$\mathbf{D}^{Ind}(h) = \begin{pmatrix} \mathbf{D}^{(s)}(h) & \mathbf{O} \\ \mathbf{O} & (\mathbf{D}^{(s)}(h))_q \end{pmatrix} \quad \mathbf{h} \in \mathbf{H}$$
$$\mathbf{D}^{Ind}(q) = \begin{pmatrix} \mathbf{O} & \mathbf{D}^{(s)}(q^2) \\ \mathbf{I} & \mathbf{O} \end{pmatrix} \quad \mathbf{q} \notin \mathbf{H}, \mathbf{q} \in \mathbf{G}$$

$$D^{lnd}(G) \quad \dim D^{lnd}_{+}(G) = \dim D^{s}(H)$$

$$D^{s}(H) \xrightarrow{\qquad \qquad } D^{lnd}_{-}(G) \quad \dim D^{lnd}_{-}(G) = \dim D^{s}(H)$$

III. Induction procedure: $G=H \cup qH$

Induction procedure for normal subgroups of index 2 and 3

Start from the irreps \mathbf{D}^s of a normal subgroup $\mathcal{H} \triangleleft \mathcal{G}$, where $|\mathcal{G}/\mathcal{H}| = 2$ or 3.

- 1. Characterize the group-subgroup chain $\mathcal{G} \triangleright \mathcal{H}$ by
 - (a) choice of appropriate generators for ${\mathcal H}$ and ${\mathcal G}$
 - (b) decompose \mathcal{G} into cosets relative to \mathcal{H} with coset representative $q: q \in \mathcal{G}$ but $q \notin \mathcal{H}$
 - i. $\mathcal{G}=\mathcal{H}\cup q\,\mathcal{H}$ for index 2
 - ii. $\mathcal{G} = \mathcal{H} \cup q \mathcal{H} \cup q^2 \mathcal{H}$ for index 3.

- 2. Determine the orbits of irreps of ${\mathcal H}$ relative to ${\mathcal G}$
 - index 2:

$$- O(\mathbf{D}^{s}(\mathcal{H})) = \{\mathbf{D}^{s}(\mathcal{H}) = (\mathbf{D}^{s}(\mathcal{H}))_{q}\}$$

(self-conjugate)

$$- O(\mathbf{D}^{s}(\mathcal{H})) = \{\mathbf{D}^{s}(\mathcal{H}), (\mathbf{D}^{s}(\mathcal{H}))_{q}\}$$

index 3:

$$- O(\mathbf{D}^{s}(\mathcal{H})) = \{\mathbf{D}^{s}(\mathcal{H}) = (\mathbf{D}^{s}(\mathcal{H}))_{q} = (\mathbf{D}^{s}(\mathcal{H}))_{q^{2}}\}$$
(self-conjugate)

$$- O(\mathbf{D}^{s}(\mathcal{H})) = \{\mathbf{D}^{s}(\mathcal{H}), (\mathbf{D}^{s}(\mathcal{H}))_{q}, (\mathbf{D}^{s}(\mathcal{H}))_{q^{2}}\}$$

3. Construction of irreps of G

- index 2
 - $\{\mathbf{D}^{s}(\mathcal{H})\}$: selfconjugate irrep

$$\mathbf{D}^1(h) = \mathbf{D}^2(h) = \mathbf{D}^s(h), h \in \mathcal{H}$$

 $\mathbf{D}^1(q) = -\mathbf{D}^2(q) = \mathbf{U}$

 $\boldsymbol{\mathsf{U}}$ is determined by the conditions

$$\mathbf{D}^{s}(q^{-1} h q) = \mathbf{U}^{-1} \mathbf{D}^{s}(h) \mathbf{U}, h \in \mathcal{H};$$

 $\mathbf{U}^{2} = \mathbf{D}^{s}(q^{2})$

-orbits of length 2

$$- \{ \mathbf{D}^{s}(\mathcal{H}), (\mathbf{D}^{s}(\mathcal{H}))_{q} \}$$
$$\mathbf{D}(h) = \begin{pmatrix} \mathbf{D}^{s}(h) & \mathbf{O} \\ \mathbf{O} & (\mathbf{D}^{s}(h))_{q} \end{pmatrix}$$

$$\mathbf{D}(q) = \begin{pmatrix} \mathbf{O} & \mathbf{D}^{s}(q^{2}) \\ \mathbf{I} & \mathbf{O} \end{pmatrix}$$

3. Construction of irreps of G

index 3

- $\{\mathbf{D}^{s}(\mathcal{H})\}$: selfconjugate irrep

$$\mathbf{D}^{m}(h) = \mathbf{D}^{s}(h), \ m = 1, \ 2, 3$$
$$\mathbf{D}^{m}(q) = \omega^{m}\mathbf{U}$$

U is determined by the conditions $\mathbf{D}^{s}(q^{-1} h q) = \mathbf{U}^{-1} \mathbf{D}^{s}(h) \mathbf{U}, h \in \mathcal{H};$ $\omega^{3} \mathbf{U}^{3} = \mathbf{D}^{s}(q^{3})$

-orbits of length 3

$$= \{ \mathbf{D}^{s}(\mathcal{H}), (\mathbf{D}^{s}(\mathcal{H}))_{q}, (\mathbf{D}^{s}(\mathcal{H}))_{q^{2}} \}$$

$$\mathbf{D}(h) = \begin{pmatrix} \mathbf{D}^{s}(h) & \mathbf{O} & \mathbf{O} \\ \mathbf{O} & (\mathbf{D}^{s}(h))_{q} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} & (\mathbf{D}^{s}(h))_{q^{2}} \end{pmatrix}$$

$$\mathbf{D}(q) = \begin{pmatrix} \mathbf{O} & \mathbf{O} & \mathbf{D}^{s}(q^{3}) \\ \mathbf{I} & \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{I} & \mathbf{O} \end{pmatrix} .$$

POINT-GROUP IRREPS BY INDUCTION PROCEDURE

Generation of point groups

Crystallographic groups are **solvable** groups **Composition series**: $I \triangleleft Z_2 \triangleleft Z_3 \triangleleft ... \triangleleft G$ index 2 or 3

Set of generators of a group is a set of group elements such that each element of the group can be obtained as an ordered product of the generators

$$W = (g_{h})^{k_{h}} * (g_{h-1})^{k_{h-1}} ... * (g_{2})^{k_{2}} * g_{1}$$

g₁ - identity g₂, g₃, ... - generate the rest of elements

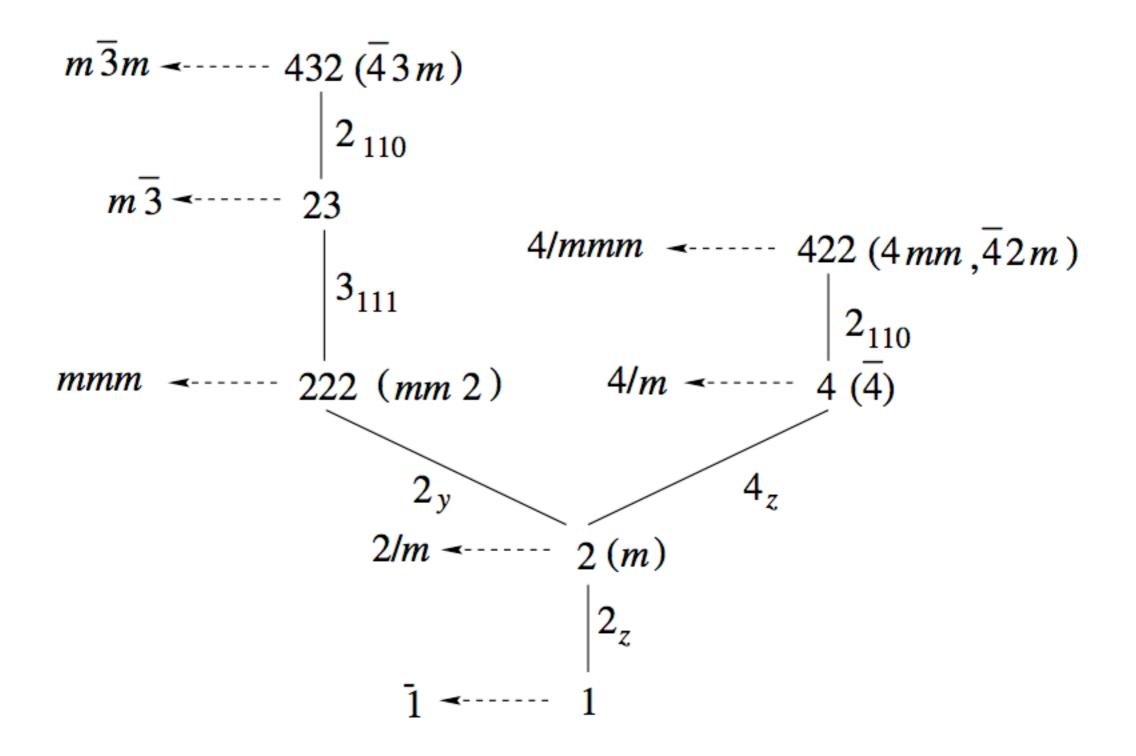
Generation of the group of the square

Composition series: $I \triangleleft 2_z \qquad 4_z \qquad m_x$ [2] [2] [2] Step 1: $|| = \{|\}$ 1 2 4 $4^{-1}m_x m_+ m_y m_-$ Step 2: $2 = \{1\} + 2_{z} \{1\}$ Step 3: $m_x m_x m_y m_- m_+ \ 1 \ 4^{-1} \ 2 \ 4$ $4 = \{1,2\} + 4_z \{1,2\}$ $m_{+}m_{+}m_{-}m_{x}m_{y}$ 4 1 4⁻¹ 2 $m_y \, m_y \, m_x \, m_+ \, m_- \,\, 2 \,\,\,\, 4 \,\,\,\, 1 \,\,\, 4^{-1}$ Step 4: $m_{-}m_{-}m_{+}m_{y}m_{x}4^{-1}241$ $4mm = 4 + m_x 4$

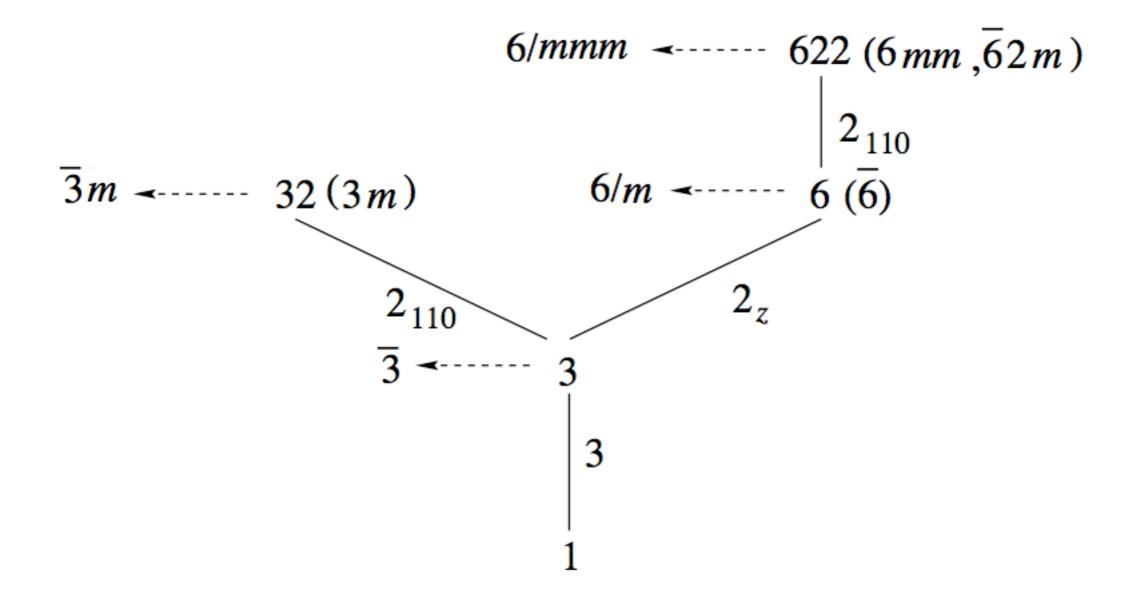
Example

Multiplication table of 4mm

Generation of sub-cubic point groups



Generation of sub-hexagonal point groups



Generate the symmetry operations of the group 4/mmm following its composition series.

Generate the symmetry operations of the group $\overline{3m}$ following its composition series.

Example: Determination of the irreps of the group $C_4(4)$

composition series for $C_4: C_4 \triangleright C_2 \triangleright C_1$

Irreps of C₂

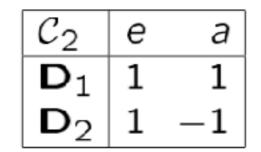
Decomposition of C_2 relative to C_1 : $C_2 = C_1 \cup aC_1$ -coset representative q is the element a.

Determination of the matrix U:

1.
$$\mathbf{U}^{-1}\mathbf{A}(e)\mathbf{U} = \mathbf{1}$$
: self-conjugacy;

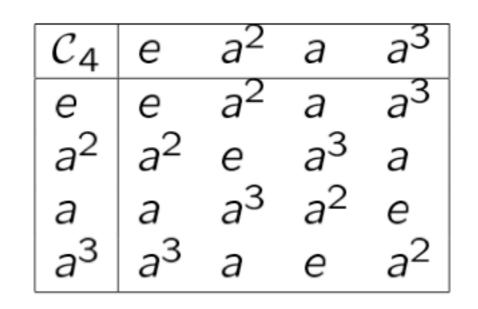
2.
$$U^2 = A(e) = 1; U = \pm 1.$$

The irreps of the group \mathcal{C}_2 are

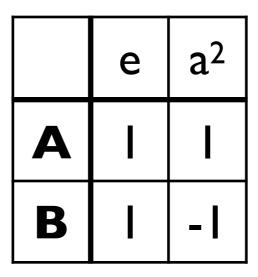


Irreps of C4: $C_4 = C_2 \cup aC_2, a = 4$

Multiplication table of C₄



C₄ is Abelian: $q^{-1}a^2q=a^2$



Irreps of C₂ (relative to C₄): selfconjugate $\{A\}, \{B\}$

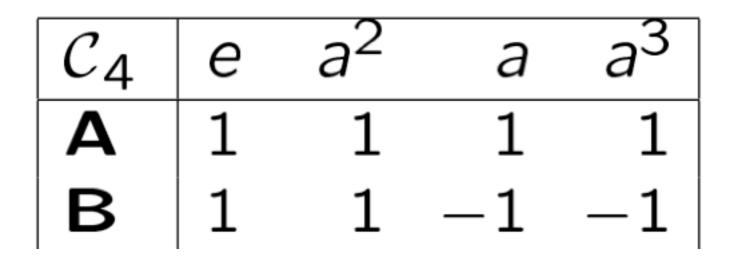
Construction of irreps of C_4

Irreps of the group C₄, induced from the irrep A
 Matrix U for O(A):

(a)
$$\mathbf{U}^{-1}\mathbf{A}(h)\mathbf{U} = \mathbf{A}(h), h \in \mathcal{C}_2$$
: self-conjugacy

(b)
$$\mathbf{U}^2 = \mathbf{D}(q^2) = \mathbf{a}^2 = +1; \ \mathbf{U} = \pm 1.$$

From the irrep **A** of C_2 the irreps **A** and **B** of C_4 have been induced.



Construction of irreps of C_4

2. Irreps of \mathcal{C}_4 , induced **B** of \mathcal{C}_2

Matrix **U** for $O(\mathbf{A})$:

(a) $\mathbf{U}^{-1}\mathbf{B}(h)\mathbf{U} = \mathbf{B}(h), h \in C_2$: self-conjugacy

(b)
$$\mathbf{U}^2 = \mathbf{B}(q^2) = \mathbf{B}(a^2) = -1; \ \mathbf{U} = \pm i.$$

From the irrep **B** of C_2 the irreps ¹**E** and ²**E** of C_4 are induced.

By the `induction procedure', derive the irreps of 4mm from those of group 4

Irreps of 4

Multiplication table of 4mm

4	1	4 _z	2_z	4_{z}^{-1}	4mm	1	2 _z	4 _z	4_z^{-1}	m _{xz}	m_{yz}	m _{xx}	$m_{x\overline{x}}$
D (1)	1	1	1	~ 1	1	1	2_z	4_{z}	4_{z}^{-1}	m _{xz}	m_{yz}	m_{xx}	$m_{x\overline{x}}$
	T	T	T	T	2_z	2_z	1	4_{z}^{-1}	4 <i>z</i>	m _{yz}	m_{xz}	$m_{x\overline{x}}$	m_{xx}
$ \mathbf{D}^{(2)} $	1	-1	1	-1	4 ₂	4 _z	$oldsymbol{4}_{z}^{-1}$	2 ₂	1	m _{xx}	$m_{x\overline{x}}$	m_{yz}	m_{xz}
	-		-		4_{z}^{-1}	4_{z}^{-1}	4_{z}	1	2_z	$m_{x\overline{x}}$	m_{xx}	m_{xz}	m_{yz}
	T	ı	-1	$-\imath$	m _{xz}	m _{xz}	m_{yz}	$m_{x\overline{x}}$	m_{xx}	1	2_z	$oldsymbol{4}_z^{-1}$	4 _z
$D^{(4)}$	1	-i	—1	i	m _{yz}	m_{yz}	m_{xz}	m_{xx}	$m_{x\overline{x}}$	2_z	1	4_{z}	4_{z}^{-1}
	-	U	-	v	m _{xx}				m_{yz}	4 _z	${4_{z}^{-1}}$	1	2_z
					$m_{x\overline{x}}$		m_{xx}				4_{z}	2_z	1

By the `induction procedure', derive:;

- (a) the irreps of the group $\overline{I}\otimes G\,$ from those of the group G;
- (b) applying the results from (a) write down the irreps of 4/mmm starting from the irreps of 422

REALITY OF REPRESENTATIONS

Representations of Groups Basic results

classification of irreps

type I or real irrep: if D(G) is real type II or pseudoreal: if $D(G) \sim D(G)^*$ but D(G) is not real type III or complex: if $D(G) \not\sim D(G)^*$

irrep reality criterion

$$\frac{1}{|G|} \sum_{g} \eta_{1}(g^{2}) = \begin{cases} +1 \text{ type I or real} \\ -1 \text{ type II or pseudoreal} \\ 0 \text{ type III or complex} \end{cases}$$

Reality of representations induced from little groups

Consider the irrep $D^{i}(H)$ of the subgroup $H \triangleleft G$ with a little group G^{i} . The irrep $D^{Ind}(G)$ induced from a small irrep $D^{m}(G^{i})$ of the little group G^{i} is of the first, second or third kind according to:

$$\frac{q_i}{h} \sum_{\alpha} \chi^i_m(r^2_\alpha) = 1, -1, 0$$

where the sum over α is restricted so that $D^{i}(H)_{\alpha} = D^{i}(H)^{-1}$

 χ_m^i - the character of the small irrep D^m(Gⁱ) h = |G|/|H| - the index of H in G

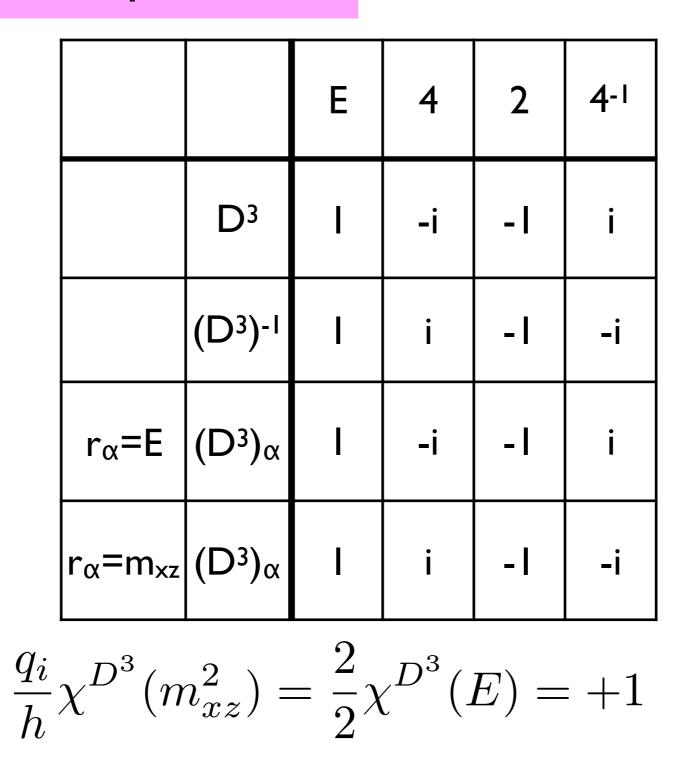
 q_i - the order of the orbit of Dⁱ(H) in G

Example: 2dim irrep of 4mm

Step 1. Coset decomposition of $4mm$ relative to 4 Step 1. $4 \cup m_{xz} 4$ Step 2. Orbits of irreps Conjugation of the elements of 4 under m_{xz} $m_{xz}^{-1} 4_z m_{xz} = 4_z^{-1};$ $m_{xz}^{-1} 2_z m_{xz} = 2_z$ Image: $m_{xz} m_{xz} m_{xz} = 4_z^{-1};$ $m_{xz}^{-1} 2_z m_{xz} = 2_z$ Image: $m_{xz} m_{xz} m_{xz} m_{xz} m_{xz} = 4_z^{-1};$ $m_{xz}^{-1} 2_z m_{xz} = 2_z$	
Conjugation of the elements of 4 under m_{xz} $m_{xz}^{-1} 4_z m_{xz} = 4_z^{-1};$ $m_{xz}^{-1} 2_z m_{xz} = 2_z$ $m_{xz} m_{xz} = 4_z^{-1};$ $m_{xz}^{-1} 2_z m_{xz} = 2_z$ $m_{xz} m_{xz} $	$m_{x\overline{x}}$
Conjugation of the elements of 4 under m_{xz} $m_{xz}^{-1} 4_z m_{xz} = 4_z^{-1};$ $m_{xz}^{-1} 2_z m_{xz} = 2_z$ $m_{xz}^{-1} \frac{1}{m_{xz}} m_{xz} \frac{1}{m_{xz}} \frac{1}{m_{xz}} \frac{1}{m_{xz}} \frac{1}{m_{xx}} \frac{1}{m_{xx}$	$m_{x\overline{x}}$
Conjugation of the elements of 4 under m_{xz} $m_{xz}^{-1} 4_z m_{xz} = 4_z^{-1};$ $m_{xz}^{-1} 2_z m_{xz} = 2_z$ $m_{xz}^{-1} \frac{1}{m_{xz}} m_{xz} \frac{1}{m_{xz}} \frac{1}{m_{xz}} \frac{1}{m_{xz}} \frac{1}{m_{xx}} \frac{1}{m_{xx}$	m_{xx}
Conjugation of the elements of 4 under m_{xz} $m_{xz}^{-1} 4_z m_{xz} = 4_z^{-1};$ $m_{xz}^{-1} 2_z m_{xz} = 2_z$ $m_{xz}^{-1} \frac{1}{m_{xz}} m_{xz} \frac{1}{m_{xz}} \frac{1}{m_{xz}} \frac{1}{m_{xz}} \frac{1}{m_{xx}} \frac{1}{m_{xx}$	m_{xz}
$m_{xz}^{-1} 4_z m_{xz} = 4_z^{-1}; m_{xz}^{-1} 2_z m_{xz} = 2_z \qquad \qquad$	m_{yz}
$m_{xz}^{-1} 4_z m_{xz} = 4_z^{-1}; m_{xz}^{-1} 2_z m_{xz} = 2_z \qquad \qquad$	4 ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4_{z}^{-1}
	2_z
Irreps of λ	1
$(\mathbf{D}^{(i)})_{m_{xz}}(4_z) = \mathbf{D}^{(i)}(4_z^{-1})$ $4 1 4_z 2_z 4_z^{-1}$ $\mathbf{D}^{(1)} 1 1 1 1$	
$\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	
$(\mathbf{D}^{(i)})_{m_{xz}}(2_z) = \mathbf{D}^{(i)}(2_z) \qquad \qquad \begin{vmatrix} \mathbf{D}^{(2)} & 1 & -1 \\ 1 & -1 & 1 & -1 \end{vmatrix}$	
$\begin{vmatrix} -2 & m_{xz} & -2 \\ \mathbf{D}^{(3)} & 1 & i & -1 & -i \end{vmatrix}$	
$old D^{(4)}$ $old 1$ $-i$ -1 i	

 $\{\mathbf{D}^{(3)}, \mathbf{D}^{(4)}\}$ --- orbit of conjugate irreps

Example: 2dim irrep of 4mm



the 2dim irrep of 4mm induced by D³ of 4 is real