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Representations of Groups

group G {$’ 82, 835 ++u» Sirer- 280}
0 \\
v |
D(G):rep of G {D(e), D(g2), D(g3),..., D(gi),... ,D(gn)}
D(gj): n x n matrices | =/
detD (g) %0 D(g)D(g)=D(gg)

dimension of representation

kernel of representation

Examples:

trivial (identity) representation

faithful representation



Equivalent Representations
of Groups

Given two reps of G:

D(G)=1D(g), g€ G}
D’(G)={D’(g|),g|EG} dim D(G)= dim D’(G)

equivalent representations D(G) ~ D(G)

if 3S: D@=5'D(S V &G

S: invertible matrix



EXERCISE 3.1

The cyclic group C4 of order 4 is generated by the
element g. Two of the following three representations of
C4 are equivalent:

Di(g)= (') : D2(g)= (,) OI Ds(g)= ? c;

Determine which of the two are equivalent and find the
corresponding similarity matrix. Can you give an argument
why the third representation is not equivalent?

Hint: The determination of X such that D’(g)=X-1D(g)X is
equivalent to determine X such that XD’(g)=D(g)X, with
the additional condition, det X+0.



Representations of Groups
Basic results

number and dimensions of irreps
number of irreps = number of conjugacy classes
order of G = > [dimDi(G)]?

great orthogonality theorem

irreps of G: D (G), D2(Q),
dim D(G)=d

> Di(g)i Dafgse = - O1Didi
8



Characters of Representations
Basic results

character  N(g) = trace[D(g)]=2. D(g)i
properties  D(G) ~ D2(G) «—— ni(g)= N2(g), g€G
51 T8 «—> Ni(g)= N(g), geG
Character Table of G: r x r matrix X=X(G)

orthogonality p\ee2) #1112, |4
| " A To1)1]1

ows "o 2 Ni(g) Na(g) = O 8, |r, |11 ]al-
5 8, Ty .

| s |

columns —— > np(C)Ne(Ci) [Cjl = O | % Tefr /1)1

Gl p



EXERCISES 3.2

Character table of 4mm

Determine the characters of the irreps of 4mm and

order them in a character table

-1,-1

1 2 447 'mymyemym_

[m_

1 2 44 'mymyemym_
2 14714 mym_mymy4
44712 1 mymym_m,
U=t 4 1 2 m_mymym,l
mzmym_my 1 4712 4
mym_mzm, 4 1 471 2

mymzmim_ 2 4 1 471
[m_m+mymx4—1 2 4 1

Multiplication table of 4mm




Direct-product groups and
their representations

Direct-product groups

G ® Gy ={(g1,82), 81€GI, 226Gy}
(g81,82) (8'1,82)= (8181, 8282)

G ® {lI,1} group of inversion

Irreps of direct-product groups

G G > G o Oy
Voo |

D, D> DX D, Kronecker product
{Di(e)® Dafe) ,...,Di(g)® Da(g) ».--}



Direct-product (Kronecker)
product of matrices

(A ® B)ikji =AiiBi

A [0 1 .
10

A®B_(OB (1,)3)

1B 0B

dim (A ® B) = dim(A) . dim(B)
tr( A @ B)=tr(A). tr(B)

(0 0 —1)

1 0 ()

\0 — 1 O)

0 0 0[]0 0 1)
0 0 0/|—-1 0 0
0 0 00 10
0 0 —1/0 0 0
1 0 0|0 00
0 -1 0|0 0 0




EXAMPLE lrreps of 222=2®2’

r Irreps of 2’

Irreps of 2

Irreps of 222




EXERCISE 3.3 Irreps of 4/mmm=422x |

Determine the character table of the group
4/mmm=422®1 from the character tables of

groups 422 and |

D,(422) | # 1|2 4|2, 2,/

Mult. |- (1]1]2(2]2]




{Representations of cyclic groups J

L\p—1
G=(9)={g,6° .g" .} TP(g") = eap(2mik)=—

g =€ p=1,....n

Point Group Tables of C6(6)

. Character Table
Point Group Tables of C (4) " .
4 C6(6) # Eleg" 3723 |6 functions
Character Table A l‘1 101 (1 (111 z,x2+y2,22,Jz
C) | # 1|24 |4 functions

2, 2 2
A (Ta1]1 11 ] zxt+y 2%
1 £ E 31| W (w21 |W W (x2-y2.xy)
B (My[1[1]-1]-1 x2y? xy 21w w1 WP | w g
r : : r 2 w -1 w2 -W
4 1 1 '1] 1J X XZ.VZ J J E o 1 -W (X,Y),(XZ,YZ),(J !J )
E r3 1 1 1J 1] (!Y)!( .Y )l( X’ y) 1 r6 1 -W W2 - W "W2 XYy

Examples: 1,2,3,4,6,T)



Representations of finite Abelian groups

. . cyclic groups
Finite Abelian groups { direct pI’OdUCt of

cyclic groups

A B —35 A XB
(a2ea} (b2 b {(ambr)} s

l l |

Dp(am),p=0,1,...s-1 Da(bn), q=0,1,...,~-I DP(a™) ® Da(b")

e:z:p(—i%rm)g e:z:p(—i%rn)%
S

Dpa(am, bn)= exp(—i2nm m)*~ exp(—i2m n)g
S

p=0,1,...,s-1 q=0,1,..,r-1



[ Direct product of representations J

{Di(e), Di(g2),...,Di(gn)} {D2(e), D2(g2),-.. ,D2(gn)}

Di® D, = {Di(e)®Dz(e) ,...Di(g)® D2(g) »---}
DX D2 irreps
—— of G
MDmiDi(G)
m = TI_ S1i() Na() Ni(e)

G| g



Direct product of representations

Di(G):irrep of G D2(G):irrep of G

V® fv, vy, ..., i) WO fwi, wa, ..., wi

Direct-product representation

DI® D; = {Di(e)®Dx(e) ,..,Di(g)® Da(g)) »---}

Carrier space
V) X WK {V|W|, V2 Wi, ..., ViWj,.., VhWk}

ReViwi=2 ViWm (D1 ® D2)(g)im



EXERCISES Problem 3.5

Let E be the 2-dimensional irrep of 4mm:

4 — 0 —1 . — —1 0
—\1 o)t 0 1 /°

1. Is the direct-product representation E ® E reducible or irreducible?

2. If reducible, find its decomposition into irreps of 4mm.

3. If the functions (fx, fy) form the basis of E, can you guess if
it would be possible to construct invariants from the functions
of the product carrier space {fx2, fifa, fof, fy2}?

4. If possible, how many invariants can be constructed, and what
are the corresponding linear combinations of fif;?



EXERCISES Problem 3.5

Point Group Tables of C4y(4mm) Irreducibility criterion

Click here to get more detailed information on the symmetry operations + magic fOI'mu la
Character Table of the group C4y(4mm) ™
Cayldmm) | # 1|2 [2 [ my |mg ‘unctions I Z | n ( ) |2 — I

M. 11122 |2 ‘ G ‘ g

A1 Mo 1 |1 7,><2+y‘?,72 g

A2 2 111 (11111 Jz

B1 3 1|1 (1] 1|~ x2-y2 I *k
B2 Fre 411111 Xy ml — Z n (g) nl(g)

E s 2|-2|/0| 0 |0 |(xy)(xzyz),[dxy) ‘ G ‘ g

D\ ® D2~ (HmiDi(G)

Clebsch-Gordan coefficients

S'(Di® D2)S =PmiDy(G)

the matrices of the determine the linear combinations of
so-called Clebsch-Gordan products of basis functions that
coefficients transform according to irreps



Problem 3.5

SOLUTION

Irreps of 4mm and their multiplication table

DI ® Dy~ €
| 3k
mi = —— > Ni(g) N2(g) Ni(g)
G| g
Cudmm) # 1 2 4 m,. my
Mult. - 11 2 2 2
Ay To11 11 1
A, (o111 [1]-1]-1
By, My 1111 -1
B, [F,|1]1[-1]-1]1

[ 2-20 0 0

_ —, E®E ~AGADBOB,

OmiDi(G) N(D1® D2)(g)= Ni(g) Na(g)

Multiplication Table

C4/(@mm) A, A, By B, E

A, A, A, B, B, E

A, A, B, B, E

B, - A1® E

B, - A1| E
|

INVARIANTS? HOW MANY?



Problem 3.5 SOLUTION

Clebsch-Gordan coefficients
S-/(DI® D2)S =HmiDi(G)
(D) ® D2)S =S OmiDi(G)

Calculation of invariants

(D) ® D2)S! = S P miDi(G) gi. the COIumn(cﬁng .

S correspon
the identity irrep

(E®E) (8)

—_— SIS

|0 |Oo |

a
b
C
d

» lolo|w

sufficiently to solve | . .
for the ge)llwerators g = 4%, My invariant ~ fx* + fy?



REPRESENTATIONS
OF

DOUBLE GROUPS




Bete (1929)

Double Groups Representations Onechowski (1940)

Definition (Opechowski, 1940):

The double group 9G of a group G of order |Gl (which is a subgroup of the 3-dim rotational
group O(3)), is an abstract group of order 2G|l having the same group-multiplication table
as the 2|GI matrices of SU(2) which correspond to the elements of G.

dG =G+EG={(R} +{R}  G={R}<O(3)
E rotation of 2n ER=R

number and dimensions of irreps

number of irreps = number of conjugacy classes
order of G =2[dimDi(G)]?

great orthogonality theorem ) D,(g)ﬁi D2(g8)s: = H 012050kt
d

character properties nNn(g) = trace[D(g)]=> D(g)i
Di(G) ~ D2(G)<—> ni(g)= N2(g). geG
g ~8&  «— Nig)=NAg) geG

orthogonality Fows |G| — 2 ni (8) I’]z(g) 6|2

columns |E| ZnP(CI) Ne(Ci) |Cj| =0k



[ Double Groups Representations ]

Theorem 1 (Opechowski, 1940):
Each representation of a group G is also a representation of the double group 4G

where n(Eg)=+n(g); it is called a single-valued representation of G.

Theorem 2 (Opechowski, 1940):

The rest of the representations of the double group 4G are called double-valued

representation of G and are such that n(Eg)=-n(9g).

notation of double-valued irreps: Bethe: 'k, Fi,...
Mulliken-Herzberg: Ek, Fk, Gk...

[2], [4], [6]

Example Irreps of the group 9222

L L [ )
— — —
I 1 I
— —
I I
—_— —_—
1 1
—_— —i
—i —ki —_ki




Note on terminology

We can either talk about single-valued and double-valued
representations of a point or space group G or alternatively
one can simply talk about the representations of the double
point (or space) group 9G.

In the second case they are ordinary single-valued irreducible
representations of 4G for which are valid all basic properties
and results.

Bradley & Cracknell, 1972



EXERCISE 3.4

D,(422) | # 1|2 |4 |2, |2

Determine the character Mut. |- 1]1]22 2|

table of the double group A Ty

4422 starting from the NEANREIEIE

character table of the AR
1 2

group 422

Hints:
Distribute the elements of 4422 into conjugacy classes

Determine the number and dimensions of the irreps of 4422!?

|
Irreducibility criterion |G_|§ n@l> = |



Classes of conjugate elements Double Groups

OPECHOWSKI RULES

To each class of G === one or two classes of 4G

self-conjugated operations ~ {E}, {E}, {1},{1E}
{(C,}, {C,}iff, n #2
{Cs(n), Ca(n)} iff 3 Co(n') or m(n') with n L n’
{m(n), m(n)} iff 3 Ca(n’) or m(n’) with n L n’
{Cr, Cp ' {Cy, G}, n> 2

Symbols of ‘double-group’ symmetry operations




SUBDUCED
REPRESENTATIONS



SUBDUCED REPRESENTATION

D(G):irrep of G-

{D(e), D(g2), D(g3),..., D(g),...,D(gn)}
v

{D(e), D(h2), D(h3), ...,.D(hm)}

S{D(G)H}S
—

E}miDi(H)

Irreps
of H




SUBDUCED REPRESENTATION

{D"(g;)} = D"(G) | H: reducible in general

1. Decomposition of D"(G) | H
D"(G) | H ~ @&m; D' h), heH.

X(D"(G L H)) = mix(D'(H))

2. Subduction matrix

S~ 1 (D" | H)(h)S = @&m,; D*(h),h € H.




EXERCISES Problem 3.5

Let E be the 2-dimensional irrep of 4mm:

4 — 0 —1 . — —1 0
{1 o)t 0 1 /°

1. Is the subduced representation E | 4 re-
ducible or irreducible 7

2. If reducible, decompose it into irreps of
4.

3. Determine the corresponding subduction
matrix S, defined by

S~ 1(E|l4)(h)S = &m; D'(h), he 4.



EXERCISES

Point Group Tables of C 4V(4mm)

Character Table

Problem 3.5

Point Group Tables of C 4(4)

Character Table

C,4) 2 4% |4 functions
A 101 (1] zx°22
B 11-1 (-1 x2-y2,xy
“T1-1 11 [ (xy), (xz J ,J
L 1145 |4 (x.y).(xz.yz),(J,.J,)

C, (4mm) 12 |4 |m |m, functions
Mult. 1111222
A, 11111 2.x2+y2. 22
A, 111 (1]-1 -1 J,
B, 101 (-1]1 |-1 x2-y?
B, 101 [-1]-1]1 Xy
E 2(-2(0 |0 |0 |(xy)(x2yz).(.J)




INDUCED
REPRESENTATIONS



{ INDUCED REPRESENTATION J

Group-subgroup pair G > H; Irrep DI(H)
Gg=HUgoyHU ... Ug, H

Induced rep of G: The set of (rdxrd) matrices

" DI(g:1gg,): if g-1gg,=nh
DI’,ld 4 | — < m/ n’ ’S . T} nl
(D) mt.ns = | 0 if 9-199, ¢ H

DInd(Q)mt,ns =M (g)m,n D/ ( h)t,s




INDUCED REPRESENTATION

Induction matrix M(g) Induced representation DInd(g)
monomial matrix super-monomial matrix




EXERCISES Problem 3.6

Construct the general form of the matrices of a
representation of G induced by the irreps of a
subgroup H<G of index 2.



Problem 3.7

Determine representations of 4mm induced
from the irreps of {|,mx}.

My
"”':L':r\ / Mz 4 mm 1 2 z 4,3 4 ~_ ! Myz Myz; Mgy Mz
1 1 2, 4, 47' | my. my. mp. muz
2.0 2, 1 47Y 4, |my me. Mz My
4. || 4. 4;1 . l Myp Mgz Mys Mgy
My - ¢ Z/ My g~ 4,1 4, 1 2, | Mgz Mgy Mgy my,
Mpy || Mpz My Mgg Myg | 1 2, 4 9.
Myz || Myz Mgz Mgy Muz | 2; 1 4, 4,,1
!
/ " \ Maz || Mz Mz My, my, | 4, 470 1 2,
.+ e Moz || Myz Mpe Mys Mys 4;1 4. 2~ 1
e

Notation:
MoI—=Mxz M0=Myz
M- |—Mxx M| I—=Mx-x




Hint to Problem 3.7

Step |. Decompostion of 4mm with respect to the
subgroup {l,mx}

Step 2. Construction of the induction matrix

M(g)mn= | if gn!ggn=h
g)mn— ,
0 if gm'lggnéH
g Em & 7_n.1 g -7_711 g 8n h = M mn 7é 0
8m & &n
1 1 1 1 1 1 1\/[11
My, My, My, My, 1 Moo




REPRESENTATIONS
OF A GROUP
IN TERMS

OF THE IRREPS OF AN
INVARIANT SUBGROUP




[ Conjugate representations ]

conjugate representation G >H:

DS(H)={D5(g-'hig), hicH, ge G,gzH}

H= {e, h, h3, ..., hi... ,hn}

irrep
{D(g'eg), D(g'h2g), ...,.D(g-'hng)}

{D(e), D(h2),...,D(hn)} \ \ \,

Ds(H)= {D(e), D(h"2),...,D(h"n)}



{ Conjugate representations ]

properties

CONJUGATE REPRESENTATION
(D*(H))g ={D*(g"* hg), heH},
whereg € G, g ¢ H
1. dim(D*(H)) = dim((D*(H))g);
2. (D%(H))q is an irrep if D*(H) is.
3. Equivalent or nonequivalent conjugate rep

(DS(H»g{ B



{Conjugate representations and orbits}

Group—normal subgroup pair G > H
Gg=HUgoHU ... Ug,H

ORBIT OF CONJUGATE REPS
O (D*(H))={D*(H), (D*(H))gs:---» (D*(H))g,},
where g € G



EXERCISES

Consider the irreps
of the group 4 and
distribute them into
orbits with respect to
the group 4mm

77N

Problem 3.8

Irreps ol J

4

2,

1
—1
2

—1

2,

~

4.

~

Multiplication table of 4mm

471 m,,

4.

471

m:ll b

Moy

m,.

My, 4.1

®




EXERCISES

Problem 3.9

Consider the irreps of the group 222
and distribute them into orbits with
respect to the group 422

Point Group Tables of 02(222)

Character Table

D,(222) | # |12, |2, |2, |functions
A (T 111 1] %3222
o Tal 111 2xyd,
B, (T|1]-1[1 |1 yxzd,
By [Tyl [-1]-1]1 | xyzd,




LITTLE GROUP AND

LITTLE-GROUP

REPRESENTATIONS

LITTLE GROUP G”:

Group-normal subgroup pair G>H; Irrep DS(H)
G5=G°(D*(H)) ={9€G:(D*(H))g ~D*(H)}

G>Gg°p>H.

ALLOWED IRREP OF TH

— LI

D’(G*(D*(H))) | H > D*(H)

NOTE: terminology

[ L

= GROUP:

allowed irrep or allowable irrep or small irrep



EXERCISES Problem 3.8 (cont)

Consider the group-subgroup pair

4mm > 4

Point Group Tables of C 4V(4mm) Point Group Tables of C 4(4)
~ Character Table Character Table

C,4mm) | # 11/2 |4 |m |m, functions C,4) | # 12 4" |4 functions
Mult. z1 212 |2 A T, T‘l 11 z,x2+y2,22,JZ
Mo 2ty B (11|11 x%-y? xy
& r2l1 ] E ARE RTIRT
B, Pyl 111 |1 x2-y* - C -1 e
52 l'4 T 1(-1]-11]1 Xy
E r5? 2(0|0 |0 |(xy)xzyz).(JJ)

Determine the little groups and the corresponding
allowed irreps for all irreps of the group 4



EXERCISES

Point Group Tables of D4(422)

Character Table of the group D4(422) *

Consider the group-subgroup pair
422 B> 222

Point Group Tables of Dz(222)

Character Table

Problem 3.9 (cont)

Dg(422) | # (1|2 |4 |2h |2h functions
Mult. 111122 | 2 .
At (T (1]1 (111 x2+y2 72
A2 2111111 /[-1]-1 Z,Jz
B1 |F3[1|1(-1[1]-1 x2-y2
B2 4111 (-1|-1]1 Xy
E [5(2|-2/0 |0 | 0 |(xy)(xz,yz),(Ix.Jy)

D,(222) | # |12, |2, |2, |functions
A 11111 ] x%y%22
1 111 |1 (1] Z2X%d,
B, 111 [-1] yxad,
B, 1011 ]1 | xyzd,

Determine the little groups and the corresponding
allowed irreps for all irreps of the group 222.




INDUCTION THEOREM

1. Let D/(#) be anirrep from the orbit O(DJ(H))
with the little group G/(DJ(H)) relative to
G. Then each allowed irrep D™ (G (DY (H)))
of G7/(DJ(H)) induces an irrep DI"4(G), whose
subduction to # yields the orbit O(DJ(H)).

2. All irreps of G are obtained exactly once if
the procedure described in 1 is applied on
one irrep DJ(H) from each orbit O(D7(#H))
of irreps of H relative to G.




Procedure for the construction of
Irreducible Representations

Method:

|. Construct all irreps of H

2. Distribute the irreps of H into orbits under G and
select a representative

3. Determine the little group for each representative

4. Find the small (allowed) irreps of the little group

5. Construct the irreps of G by induction from the
the small (allowed) irreps of the little group



Special cases: Subgroups of index 2
GDH: |G|/|[H[F2 G=H u qH, q¢H, qeG
|. Orbits of Ds(H) with respect to G
(i) O(Ds(H))={Ds(H), Ds(H)q#Ds(H);
(i) O(Ds(H))={D=(H);

1. Little group and allowed irreps

(i) O(Ds(H))={Ds(H), Ds(H)q}
L=H, Ds(H): allowed

(i) O(Ds(H))=1Ds(H);
L=G, D(G) { H>Ds(H): allowed



lll. Induction procedure: G=H u qH
(i) O(Ds(H))={Ds(H), Ds(H)q}

Induction matrix

gle:| &'e |&g| & 'gg; |Mij#0

h| e h e ehe=h M

g| g'h | q|qg hg=(h)y,| My
qg|e q q g M
q q_l q==¢e e € 17\-'"[-21

Matrices of the induced irrep

D) (h) 0,
Dlud h) = / |

(8)( 2
Dfml(q) _ ( O D O(q ) ) qéH’ qEG



lll. Induction procedure: G=H u qH

Dind(G)  dim D'9(G) =dim Ds(H)

Ds(H) <
™~ Dind(G)  dim D'nd(G) =dim Ds(H)
Dd(G) Dd(G)
D'yd(h)=Ds(h) Dizd(h)=Ds(h)
Dlnd(q)=U D'nd(q)=-U

U-1Ds(h)U=Ds(h).



éa . )
Induction procedure for normal subgroups of

\_

index 2 and 3

J

Start from the irreps D® of a normal subgroup
H <G, where |G/H| =2 or 3.

1. Characterize the group-subgroup chain
G > H by

(a) choice of appropriate generators for H
and ¢

(b) decompose G into cosets relative to H
with coset representative qg: g € G but

q¢H
. G =HUQgH for index 2

i. G=HUQgHUGg?H for index 3.



2. Determine the orbits of irreps of ‘H relative
to g

e index 2:

— O(D*(H)) = {D*(H) = (D*(H))q}
(self-conjugate)

— O(D*(H)) ={D*(H), (D*(H))q}

e index 3:

— O(D*(H)) = {D*(H) = (D*(H))q =
(DS(H))qz} (self-conjugate)

— O(D*(H)) = {D*(H), (D*(H))q, (D3(H)) g2}



3. Construction of irreps of G

e index 2

— {D3(H)}: selfconjugate irrep

Dl(h) = D?(h) =D*(h),heH
D'(q) = -D*(q) = U
U is determined by the conditions
D’(g thqg) =U"1D*h) U, heH;

U? = D*(q°)



— {D*(H), (D*(H))q}

*(h O
D(h) = ( Dc() ) (D3(h)), )



3. Construction of irreps of G

e index 3

— {D3(H)}: selfconjugate irrep
D"(h) =D?%h), m=1, 2,3
D"(q) =w™U
U is determined by the conditions
D(g 1hg)=U"1D*h) U, heH

w3U3 — DS(q3)



-orbits of length 3

— {D*(H), (D*(H))q, (D*(H)) g2}

/ D3(h)
\ O

D(g)=| 1

\ O

O

(D*(h))q
O

[ O O D%(q3) )

O O
I O

o
O
(D3(h)),2

)



POINT-GROUP IRREPS

BY INDUCTION
PROCEDURE




Generation of point groups

Crystallographic groups are solvable groups

Composition series: | <| 7, <] Z3<] ..<| G
index 2 or 3

Set of generators of a group is a set of group
elements such that each element of the group can be
obtained as an ordered product of the generators

ki,

W=(gn)" = (gn) .. = (g2) " g

g| - identity
g2, g3, ... - generate the rest of elements



Example Generation of the group of the square

2,

42 Mx

Composition series: 1 <] 2 < 4 <] 4mm
21 2] [2]

Step |:
I ={l}

Step 2:
2={1}+2,{l}

Step 3:
4 ={1,2} + 4, {l,2}

Step 4:
4dmMm =4 + m, 4

1 2 447 'mymyemyme_

m

[I’Tl_

1 2 447 'mymyemym_
2 1474 mym_mgzmy
44712 1 mymym_m;,
U=t 4 1 2 m_mymym,l
mzmym_my 1 4712 4
mym_mgzm, 4 1 471 2
mymzmim—_ 2 4 1 471

[m_m+mymx4_1 2 4 1

Multiplication table of 4mm



432 (43m)

| 2 110

23
4/mmm —=------- 427 (4 mm
3111
2110

222 (mm?2) dm <------ 4 (4)

k /

2/m =<------- p) (m)
22
1= 1

42m)



6/mmm =------- 622 (6mm ,62m)

|2110

3m <o 32 (3m) 6/m < 6 (6)
x /
3 = 3
3




Problem 3.10

Generate the symmetry operations of the
group 4/mmm following its composition
series.

Generate the symmetry operations of the
group 3m following its composition series.



Example: Determination of the irreps of the group Ca4(4)

composition series for C4: C4 B> C, > C)

Irreps of C;

Decomposition of C» relative to Cy:
Co=C1UalCq
-coset representative q is the element a.

Determination of the matrix U;
1. U lA(e)U = 1: self-conjugacy;

2. U2=A(e)=1; U= +1.

Cr 1€ a
T heirreps of the group C» are D 1 1
D> 1 —1




Irreps of C4: Cs4= Cyu aCya=4

Multiplication table of C4

a a
a a°
a2l a2 e a3 a

alad a e &2

Irreps of C, (relative to C4): selfconjugate

{A}, {B}



Construction of irreps of C4

1. Irreps of the group Cg4, induced from the
irrep A

Matrix U for O(A):

(a) U L A(h)U = A(h), h € C»: self-conjugacy

(b) U2=D(g?) =a?=+1; U=+1.

From the irrep A of Co the irreps A and B
of C4 have been induced.

Cale a2 a a3
A |1 1 1 1
B |1 1 —1 -1




Construction of irreps of C4

2. Irreps of Cy4, induced B of C»

Matrix U for O(A) :
(a) U 1B(h)U = B(h), h € Cy: self-conjugacy

(b) U2 = B(CJQ) = 3(82) = —1;, U= 1u.

From the irrep B of Co, the irreps 'E and
°E of C4 are induced.

Cale a= a a°
lel1 -1 -
El1 —1 i —i




EXERCISES

Problem 3.1 |

By the “induction procedure’, derive the irreps of 4mm
from those of group 4

Irreps of /

Multiplication table of 4mm

1

4.

2, 41

imm || 1 . 4. 4;1 My, My, Mg Mgz

1| 1 2, 4, 4;1 My, My, My Mgz

2 P 2 P 1 4 ; . 4 2 m'q My, Mez Mgy

4z 4z 4z ! 28 1 Mgy Mgz Myz; Mg,
Sol4;t 4, 10 2, |mgz my, m,, my,
Mez || Mgy My Mgz Mgy 1 2;: 42 ! 4.
m,, |m, m,, m, mz| 2, I 4, 47
Mgz || My Mzz Mzz My 1, 4;1 1 2z

mxf m;z:a: My myz m:r,., 4 ; 4z 2z 1




EXERCISES Problem 3.12

By the “induction procedure’, derive:;

(a) the irreps of the group | ® G from those
of the group G;

(b) applying the results from (a) write down
the irreps of 4/mmm starting from the
irreps of 422



REALITY
OF

REPRESENTATIONS




Representations of Groups
Basic results

classification of irreps

type | or real irrep: if D(G) is real
type Il or pseudoreal: if D(G) ~ D(G)* but D(G) is not real

type lll or complex: if D(G)*D(G)*

irrep reality criterion

| +| type | or real
Gl > Nig?) = -1 type Il or pseudoreal
S 0 type lll or complex



Reality of representations
induced from little groups

Consider the irrep Di(H) of the subgroup H<]G with a little
group G'. The irrep DInd(G) induced from a small irrep D™(G') of
the little group G' is of the first, second or third kind according to:

D Xin(r2) = 1,-1,0

84

where the sum over « is restricted so that D*(H), = D*(H)™*

Xin - the character of the small irrep D™(Gi)
h=|G|/|H| -the index of Hin G

4i - the order of the orbit of Di(H) in G



Example: 2dim irrep of 4mm

Step |.
gmm = 4 U My, 4

Step 2.  Orbits of irreps

Conjugation of the elements of 4 under m,,
—1 —1. —1
M 4z My 4.5 My, 2, my, 2,

/

(D). (4:) = DV (4T

{DG) D#} --- orbit of conjugate irreps

Coset decomposition of 4mm relative to 4

smm | 1 2, 4 4;1 My, My, Mg, Mg
1| 1 2, 4, 4;1 My, My, Mg, My
22 27 1 4;1 47 My, My Mgz My
4. | 4. 4‘,.1 2. 1 |my, myzp my,, m,
47|47 4, 1 2, |mz m., m. my,
Mgz || Myy My Mgz Mgy | 1 2, 4Z1 4,
myz mgz m,, m,, Mz 2z 1 4z 42_]
Mex Mye Mez Mg myz 4z 4;1 1 22
Mgz Myz Mgy myz Mg 4;- 4z 2z 1
Irreps of 4
4 1 4, 2, 471
N\
DY i1 1 1 1
2\
D® 1 -1 1 -1
3) ‘ .
D® 1 r —1 =
3 N -
D —7  —] 7




Example: 2dim irrep of 4mm

D3 I -i | - i

O3 1| i |- -

r=E [(D)o] | | -i | -1 | i

Foa—Mxz (DB)O( I | - | -

Qi 3 2 3
X (mg2) = ox7 (B) = +1

2
the 2dim irrep of 4mm induced by D3 of 4 is real



