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Space group G: The set of all symmetry operations (isometries) 
of a crystal pattern

Crystal pattern: infinite, idealized crystal structure (without 
disorder, dislocations, impurities, etc.)

The infinite set of all translations 
that are symmetry operations 
of the crystal pattern

Translation subgroup H    G: 

Point group of the 
space groups PG: 

The factor group of the space group 
G with respect to the translation
subgroup T: PG ≅ G/H

SPACE GROUPS



INTERNATIONAL TABLES FOR 
CRYSTALLOGRAPHY

VOLUME A: SPACE-GROUP SYMMETRY

•headline with the relevant group symbols;
•diagrams of the symmetry elements and of the 
  general position;
•specification of the origin and the asymmetric 
  unit;
•list of symmetry operations;
•generators;
•general and special positions with multiplicities, 
  site symmetries, coordinates and reflection 
  conditions;
•symmetries of special projections;

Extensive tabulations and illustrations
 of the 17 plane groups and 

of the 230 space groups



HERMANN-MAUGUIN 
SYMBOLISM



Hermann-Mauguin symbols for space groups

primary
direction tertiary

direction

secondary
direction

-symmetry elements along primary, secondary and
 ternary symmetry directions

- centring type

- rotations/planes along the same direction

rotations: by the axes of rotation
planes: by the normals to the planes

A direction is called a symmetry direction of a crystal structure if it 
is parallel to an axis of rotation or rotoinversion or if it is parallel to 
the normal of a reflection plane.



14 Bravais Lattices

crystal family



Hermann-Mauguin symbols for space groups



SPACE-GROUP 
SYMMETRY 

OPERATIONS



Symmetry Operations Characteristics

TYPE of the symmetry operation

ORIENTATION of the geometric element

LOCATION of the geometric element

SCREW/GLIDE component

preserve or not handedness

GEOMETRIC ELEMENT 



Crystallographic symmetry operations

fixed points of isometries characteristics:

identity:

Types of isometries

translation t:

the whole space fixed

                                        no fixed point x̃ = x + t

rotation: one line fixed
rotation axis 

φ = k × 360
◦/N

screw rotation: no fixed point
screw axis 

preserve handedness

screw vector

(W,w)Xf=Xf
geometric elements 



Crystallographic symmetry operations

Screw rotation

n-fold rotation followed 
by a fractional 

translation      t parallel 
to the rotation axis

p
n

Its application n times 
results in a translation 
parallel to the rotation 

axis



roto-inversion:

Types of isometries

inversion:

centre of roto-inversion fixed
roto-inversion axis

reflection: plane fixed
reflection/mirror plane 

glide reflection: no fixed point
glide plane 

do not
preserve handedness

glide vector

centre of inversion fixed

fixed points of isometries characteristics: (W,w)Xf=Xf
geometric elements 



Crystallographic symmetry operations

Glide plane

reflection followed by a 
fractional translation

   t parallel to the plane

Its application 2 times 
results in a translation 
parallel to the plane

1
2



Description of isometries

coordinate system: {O,a,b, c}

isometry:
X X

~

(x,y,z) (x,y,z)~ ~ ~

=  F1(x,y,z)~x



Matrix-column presentation of 
isometries

linear/matrix
 part

translation
column part

matrix-column
pair

Seitz symbol



-1

1

-1

1/2

0

1/2

Referred to an ‘orthorhombic’ coordinated system (a≠b≠c; 
α=β=γ=90) two symmetry operations are represented by the 
following matrix-column pairs: 

EXERCISES Problem 2.1 

(W2,w2)=

Determine the images Xi of a 
point X under the symmetry 
operations (Wi,wi) where

-1

1

-1

0

0

0

(W1,w1)=

0,70

0,31

0,95

X=

Can you guess what is the 
geometric ‘nature’ of (W1,w1)? 
And of (W2,w2)? 

A drawing could be rather helpful  
Hint: 

( ) ( )



Combination of isometries

(U,u)
X X

~

(V,v)

~
X
~

(W,w)



-1

1

-1

1/2

0

1/2

Consider the matrix-column pairs of the two symmetry operations: 

EXERCISES Problem 2.1(cont) 

(W2,w2)=
0 -1

1 0

1

0

0

0

(W1,w1)=( ) ( )
Determine and compare the matrix-column pairs of the combined 
symmetry operations: 

(W,w)=(W1,w1)(W2,w2)

(W,w)’=(W2,w2)(W1,w1)

combination of isometries:



Inverse isometries

X
~

(C,c)=(W,w)-1

(W,w)
X

~~
X

(C,c)(W,w) = (I,o)
= 3x3 identity matrix I

o = zero translation column 

(C,c)(W,w) = (CW, Cw+c)

C=W-1

Cw+c=o

c=-Cw=-W-1w

CW=I



-1

1

-1

1/2

0

1/2

EXERCISES Problem 2.1(cont) 

(W2,w2)=
0 -1

1 0

1

0

0

0

(W1,w1)=( ) ( )
Determine the inverse symmetry operation (W,w)-1

(W,w)=(W1,w1)(W2,w2)

Determine the inverse symmetry operations (W1,w1)-1 and 
(W2,w2)-1 where

inverse of isometries:



Short-hand notation for the description 
of isometries

isometry: X X
~

-left-hand side: omitted 
-coefficients 0, +1, -1
-different rows in one line

notation rules:

examples: -1

1

-1

1/2

0

1/2

-x+1/2, y, -z+1/2

(W,w)

x+1/2, y, z+1/2{



Problem 2.2

EXERCISES

Construct the matrix-column pair (W,w) of the 
following coordinate triplets:

(1) x,y,z (2) -x,y+1/2,-z+1/2

(3) -x,-y,-z (4) x,-y+1/2, z+1/2



Matrix formalism: 4x4 matrices

augmented
 matrices:

point X −→ point X̃ :



combination and inverse of isometries:

point X −→ point X̃ :

4x4 matrices: general formulae



PRESENTATION OF 
SPACE-GROUP SYMMETRY 

OPERATIONS

IN 
INTERNATIONAL TABLES 
FOR CRYSTALLOGRAPHY, 

VOL. A



Space group Cmm2 (No. 35)

Diagram of symmetry elements

0 b

a

Diagram of 
general position points

General Position

How are the symmetry 
operations 

represented in ITA ?



coordinate triplets of an image point X of 
the original point X=     under (W,w) of G

short-hand notation of the matrix-column pairs 
(W,w) of the symmetry operations of G

-presentation of infinite symmetry operations of G
(W,w) = (I,tn)(W,w0), 0≤wi0<1

(i)

(ii)

General position

~

x

y

z

-presentation of infinite image points X under the 
action of (W,w) of G

~



Coset decomposition G:TG

(I,0)     (W2,w2)     ...   (Wm,wm)       ...   (Wi,wi)

(I,t1)     (W2,w2+t1) ...  (Wm,wm+t1)  ...   (Wi,wi+t1)
(I,t2)     (W2,w2+t2) ...  (Wm,wm+t2)  ...   (Wi,wi+t2)

(I,tj)     (W2,w2+tj) ...   (Wm,wm+tj)  ...    (Wi,wi+tj)
...               ...        ...         ...           ...       ...

...               ...        ...         ...           ...       ...

Factor group G/TG

isomorphic to the point group PG of G

Point group PG = {I, W2, W3,…,Wi}

General position

Symmetry 
operations 

expressed in 
x,y,z notation

General Position of Space groups (infinite order)



Symmetry Operations Block

TYPE of the symmetry operation

ORIENTATION of the geometric element

LOCATION of the geometric element

GEOMETRIC INTERPRETATION OF  THE MATRIX-
COLUMN PRESENTATION OF
THE SYMMETRY OPERATIONS

SCREW/GLIDE component



EXAMPLE

Geometric 
interpretation

Matrix-column 
presentation

Space group P21/c (No. 14)



BILBAO 
CRYSTALLOGRAPHIC 

SERVER 



www
.cry

st.e
hu.e

s



International Tables for 
Crystallography 

Crystallographic 
Databases



Crystallographic databases

Structural utilities

Solid-state applications

Representations of
point and space groups

Group-subgroup
relations









space group

14

Bilbao Crystallographic Server

Problem:
GENPOSGeometrical interpretation

Matrix-column presentation



Space-group
symmetry operations

Geometric interpretation

ITA
data

Example GENPOS: Space group P21/c (14)

short-hand notation

matrix-column 
presentation

Seitz symbols

General positions



short-hand description of the matrix-column presentations of 
the symmetry operations of the space groups

translation part t

- specify the type and the order of the symmetry 
operation; 

- orientation of the symmetry element by the direction of 
the axis for rotations and rotoinversions, or the direction 
of the normal to reflection planes.

translation parts of the coordinate triplets of the General 
position blocks

identity and inversion
reflections
rotations
rotoinversions

1 and 1
m

 2, 3, 4 and 6
3, 4 and 6

Seitz symbols { R | t }

rotation (or linear) 
part R

SEITZ SYMBOLS  FOR  SYMMETRY OPERATIONS 



Seitz symbols for symmetry 
operations of hexagonal and 

trigonal crystal systems

EXAMPLE

Glazer et al. Acta Cryst A 70, 300 (2014)



EXAMPLE

Geometric 
interpretation

Matrix-column 
presentation

Seitz symbols (1) {1|0}   (2) {2010|01/21/2 }   (3) {1|0}    (4) {m010|01/21/2}  



Geometric 
Interpretation of (W,w)

Problem: SYMMETRY
OPERATION

Bilbao Crystallographic Server



Problem 2.2 (cont.)EXERCISES

Construct the matrix-column pairs (W,w) of the 
following coordinate triplets:

(1) x,y,z (2) -x,y+1/2,-z+1/2
(3) -x,-y,-z (4) x,-y+1/2, z+1/2

Use the program SYMMETRY OPERATIONS for the 
geometric interpretation of the matrix-column pairs of 
the symmetry operations.

Characterize geometrically these matrix-column pairs 
taking into account that they refer to a monoclinic basis 
with unique axis b (type of operation, glide/screw 
component, location of the symmetry operation).



1. Characterize geometrically the matrix-column pairs 
listed under General position of the space group 
P4mm in ITA. 

Consider the diagram of the symmetry elements of 
P4mm. Try to determine the matrix-column pairs of 
the symmetry operations whose symmetry 
elements are indicated on the unit-cell diagram. 

2.

Problem 2.3

3. Compare your results with the results of the program 
SYMMETRY OPERATIONS 

EXERCISES



GENERAL 
AND 

SPECIAL WYCKOFF 
POSITIONS  

SITE-SYMMETRY



Group Actions

Group
Actions

Orbit and Stabilizer



Site-symmetry group So={(W,w)} of a point Xo 

General position Xo 

Site-symmetry groups: oriented symbols 

Multiplicity: |P|/|So|

 General and special Wyckoff positions

Multiplicity: |P| Multiplicity: |P|/|So|

Orbit of a point Xo under G: G(Xo)={(W,w) Xo,(W,w)∈G} 
Multiplicity

Special position Xo 

(W,w)Xo = Xo

=
a b c

d e f

g h i

x0

y0

z0

x0

y0

z0

w
1w
2w
3

( )
S={(1,o)}≃ 1 S> 1 ={(1,o),...,}



coordinate triplets of an image point X of 
the original point X=     under (W,w) of G

short-hand notation of the matrix-column pairs 
(W,w) of the symmetry operations of G

-presentation of infinite symmetry operations of G
(W,w) = (I,tn)(W,w0), 0≤wi0<1

(i)

(ii)

General position

~

x

y

z

-presentation of infinite image points X under the 
action of (W,w) of G

~



General Position of Space groups

(I,0)X     (W2,w2)X     ...   (Wm,wm)X       ...   (Wi,wi)X

(I,t1)X     (W2,w2+t1)X ...  (Wm,wm+t1)X  ...   (Wi,wi+t1)X
(I,t2)X     (W2,w2+t2)X ...  (Wm,wm+t2)X  ...   (Wi,wi+t2)X

(I,tj)X     (W2,w2+tj)X ...   (Wm,wm+tj)X  ...    (Wi,wi+tj)X
...               ...        ...         ...           ...       ...

...               ...        ...         ...           ...       ...

General position

As coordinate triplets of an image point X of 
the original point X=     under (W,w) of Gx

y

z

~



S={(W,w), (W,w)Xo = Xo}
-1/
2
0

-1/
2

-1

-1

-1

1/2

0

1/2

Group P-1

=
0

0

0( )
Sf={(1,0), (-1,101)Xf = Xf}
Sf≃{1, -1} isomorphic

 Example: Calculation of the Site-symmetry groups 



 General and special Wyckoff positions of P4mm 

EXERCISES



Problem: WYCKPOS

Transformation 
of the basis

ITA 
settings

space group

Wyckoff positions
Site-symmetry groups
Coordinate transformations

Bilbao Crystallographic Server

Standard basis



Bilbao Crystallographic
 Server



2 x,1/4,1/4

2 1/2,y,1/4

Example WYCKPOS:  Wyckoff Positions Ccce (68)



Problem 2.4EXERCISES

Consider the special Wyckoff positions of the 
the space group P4mm. 

Determine the site-symmetry groups of  Wyckoff 
positions 1a and 1b. Compare the results with the 
listed ITA data

The coordinate triplets (x,1/2,z) and (1/2,x,z), 
belong to Wyckoff position 4f.  Compare their 
site-symmetry groups.

Compare your results with the results of the 
program WYCKPOS.



DOUBLE SPACE 
GROUPS 



Double space groups

The double group dG of G is defined by: 
G=(E,0)T+(R2,v2)T + … +(Rn,vn)T 

Space group G = {(R,v)}: coset decomposition with respect to T 

dG=(E,0)T+(E,0)T+(R2,v2)T+(R2,v2)T+ … +(Rn,vn)T+(Rn,vn)T 
Ri and Ri are the elements of the double point group dG 
corresponding to the element Ri of the point group of G, and T 
is the translation subgroup of G.

double translation subgroup dT: dT=(E,0)T+(E,0)T

T and dT: abelian groups

dG=(E,0)dT+(R2,v2)dT+ … +(Rn,vn)dT dT dG

dT=T x {(E,0),(E,0)}

Note: the operations of dG
that correspond to G do not form a closed setG ≮dG



Multiplication rules:

(R1,v1)(R2,v2)=(R1R2,R1v2+v1) (R1,v1)(R2,v2)=(R1R2,R1v2+v1)
(R1,v1)(R2,v2)=(R1R2,R1v2+v1)
(R1,v1)(R2,v2)=(R1R2,R1v2+v1)

(R1,v1)(R2,v2)=(R1R2,R1v2+v1)

Action on a vector/point: Rx = Rx

(R,v)X = (R,v)X

Double space groups

space group G double space group dG

Wyckoff positions and site-symmetry groups:



DOUBLE CRYSTALLOGRAPHIC 
GROUPS



Double space group 
P212121(19)

DGENPOSExample

The symmetry operations 
are specified by:

matrix representations
shorthand notation

x,y,z coordinate triplets
s1,s2 spin components

Seitz symbols

E = d1
R = d1R= dR

Symbols of ‘double-group’ operations



CO-ORDINATE 
TRANSFORMATIONS 

IN 
CRYSTALLOGRAPHY



Also, the inverse matrices of P and pare needed. They are

Q ! P"1

and

q! "P"1p!

The matrix qconsists of the components of the negative shift vector
q which refer to the coordinate system a#, b#, c#, i.e.

q ! q1a# $ q2b# $ q3c#!

Thus, the transformation (Q, q) is the inverse transformation of
(P, p). Applying (Q, q) to the basis vectors a#, b#, c# and the origin
O#, the old basis vectors a, b, c with origin O are obtained.

For a two-dimensional transformation of a# and b#, some
elements of Q are set as follows: Q33 ! 1 and
Q13 ! Q23 ! Q31 ! Q32 ! 0.

The quantities which transform in the same way as the basis
vectors a, b, c are called covariant quantities and are written as row
matrices. They are:

the Miller indices of a plane (or a set of planes), (hkl), in direct
space and

the coordinates of a point in reciprocal space, h, k, l.

Both are transformed by

%h#, k#, l#& ! %h, k, l&P!

Usually, the Miller indices are made relative prime before and after
the transformation.

The quantities which are covariant with respect to the basis
vectors a, b, c are contravariant with respect to the basis vectors
a', b', c' of reciprocal space.

The basis vectors of reciprocal space are written as a column
matrix and their transformation is achieved by the matrix Q:

a'#

b'#

c'#

!

"#

$

%& ! Q

a'

b'

c'

!

"#

$

%&

!
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

!

"#

$

%&
a'

b'

c'

!

"#

$

%&

!
Q11a' $ Q12b' $ Q13c'

Q21a' $ Q22b' $ Q23c'

Q31a' $ Q32b' $ Q33c'

!

"#

$

%&!

The inverse transformation is obtained by the inverse matrix

P ! Q"1:

a'

b'

c'

!

#

$

& ! P
a'#

b'#

c'#

!

#

$

&!

These transformation rules apply also to the quantities covariant
with respect to the basis vectors a', b', c' and contravariant with
respect to a, b, c, which are written as column matrices. They are the
indices of a direction in direct space, [uvw], which are transformed
by

u#

v#

w#

!

#

$

& ! Q
u
v
w

!

#

$

&!

In contrast to all quantities mentioned above, the components of a
position vector r or the coordinates of a point X in direct space
x, y, z depend also on the shift of the origin in direct space. The
general (affine) transformation is given by

x#

y#

z#

!

"#

$

%& ! Q

x

y

z

!

"#

$

%& $ q

!
Q11x $ Q12y $ Q13z $ q1

Q21x $ Q22y $ Q23z $ q2

Q31x $ Q32y $ Q33z $ q3

!

"#

$

%&!

Example

If no shift of origin is applied, i.e. p! q! o, the position vector
r of point X is transformed by

r# ! %a, b, c&PQ
x
y
z

!

#

$

& ! %a#, b#, c#&
x#

y#

z#

!

#

$

&!

In this case, r ! r#, i.e. the position vector is invariant, although
the basis vectors and the components are transformed. For a pure
shift of origin, i.e. P ! Q ! I , the transformed position vector r#
becomes

r# ! %x $ q1&a $ %y $ q2&b $ %z $ q3&c
! r $ q1a $ q2b $ q3c
! %x " p1&a $ %y " p2&b $ %z " p3&c
! r " p1a " p2b " p3c!

Here the transformed vector r# is no longer identical with r.

It is convenient to introduce the augmented %4 ( 4 & matrix !
which is composed of the matrices Q and qin the following manner
(cf. Chapter 8.1):

! ! Q q
o 1

' (
!

Q11 Q12 Q13 q1

Q21 Q22 Q23 q2

Q31 Q32 Q33 q3

0 0 0 1

!

""#

$

%%&

with othe %1 ( 3& row matrix containing zeros. In this notation, the
transformed coordinates x#, y#, z# are obtained by

Fig. 5.1.3.1. General affine transformation, consisting of a shift of origin
from O to O# by a shift vector p with components p1 and p2 and a change
of basis from a, b to a#, b#. This implies a change in the coordinates of
the point X from x, y to x#, y#.

79

5.1. TRANSFORMATIONS OF THE COORDINATE SYSTEM

(a,b, c), origin O: point X(x, y, z)

(a′
,b′

, c′), origin O’: point X(x′
, y

′
, z

′)

3-dimensional space

(P,p)

Co-ordinate transformations in crystallography

5.1. Transformations of the coordinate system (unit-cell transformations)
BY H. ARNOLD

5.1.1. Introduction

There are two main uses of transformations in crystallography.
(i) Transformation of the coordinate system and the unit cell

while keeping the crystal at rest. This aspect forms the main topic of
the present part. Transformations of coordinate systems are useful
when nonconventional descriptions of a crystal structure are
considered, for instance in the study of relations between different
structures, of phase transitions and of group–subgroup relations.
Unit-cell transformations occur particularly frequently when
different settings or cell choices of monoclinic, orthorhombic or
rhombohedral space groups are to be compared or when ‘reduced
cells’ are derived.

(ii) Description of the symmetry operations (motions) of an
object (crystal structure). This involves the transformation of the
coordinates of a point or the components of a position vector while
keeping the coordinate system unchanged. Symmetry operations are
treated in Chapter 8.1 and Part 11. They are briefly reviewed in
Chapter 5.2.

5.1.2. Matrix notation

Throughout this volume, matrices are written in the following
notation:

As (1 ! 3) row matrices:

(a, b, c) the basis vectors of direct space
(h, k, l) the Miller indices of a plane (or a set of

planes) in direct space or the coordinates
of a point in reciprocal space

As (3 ! 1) or (4 ! 1) column matrices:
x " #x!y!z$ the coordinates of a point in direct space
#a%!b%!c%$ the basis vectors of reciprocal space
(u!v!w) the indices of a direction in direct space
p" #p1!p2!p3$ the components of a shift vector from

origin O to the new origin O &

q" #q1!q2!q3$ the components of an inverse origin
shift from origin O & to origin O, with
q" ' P' 1p

w " #w1!w2!w3$ the translation part of a symmetry
operation ! in direct space

! " #x!y!z!1$ the augmented #4 ! 1$ column matrix of
the coordinates of a point in direct space

As (3 ! 3) or (4 ! 4) square matrices:
P, Q " P' 1 linear parts of an affine transformation;

if P is applied to a #1 ! 3$ row matrix,
Q must be applied to a #3 ! 1$ column
matrix, and vice versa

W the rotation part of a symmetry
operation ! in direct space

" " P p
o 1

! "
the augmented affine #4 ! 4 $ trans-
formation matrix, with o" #0, 0, 0$

# " Q q
o 1

! "
the augmented affine #4 ! 4 $ trans-
formation matrix, with # " "' 1

$ " W w
o 1

! "
the augmented #4 ! 4 $ matrix of a
symmetry operation in direct space (cf.
Chapter 8.1 and Part 11).

5.1.3. General transformation

Here the crystal structure is considered to be at rest, whereas the
coordinate system and the unit cell are changed. Specifically, a
point X in a crystal is defined with respect to the basis vectors a, b, c
and the origin O by the coordinates x, y, z, i.e. the position vector r
of point X is given by

r " xa ( yb ( zc

" #a, b, c$
x

y

z

#

$%

&

'("

The same point X is given with respect to a new coordinate system,
i.e. the new basis vectors a&, b&, c& and the new origin O& (Fig.
5.1.3.1), by the position vector

r& " x&a& ( y&b& ( z&c&"

In this section, the relations between the primed and unprimed
quantities are treated.

The general transformation (affine transformation) of the
coordinate system consists of two parts, a linear part and a shift
of origin. The #3 ! 3$ matrix P of the linear part and the #3 ! 1$
column matrix p, containing the components of the shift vector p,
define the transformation uniquely. It is represented by the symbol
(P, p).

(i) The linear part implies a change of orientation or length or
both of the basis vectors a, b, c, i.e.

#a&, b&, c&$ " #a, b, c$P

" #a, b, c$
P11 P12 P13

P21 P22 P23

P31 P32 P33

#

$%

&

'(

" #P11a ( P21b ( P31c,

P12a ( P22b ( P32c,

P13a ( P23b ( P33c$"

For a pure linear transformation, the shift vector p is zero and the
symbol is (P, o).

The determinant of P, det#P$, should be positive. If det#P$ is
negative, a right-handed coordinate system is transformed into a
left-handed one (or vice versa). If det#P$ " 0, the new basis vectors
are linearly dependent and do not form a complete coordinate
system.

In this chapter, transformations in three-dimensional space are
treated. A change of the basis vectors in two dimensions, i.e. of the
basis vectors a and b, can be considered as a three-dimensional
transformation with invariant c axis. This is achieved by setting
P33 " 1 and P13 " P23 " P31 " P32 " 0.

(ii) A shift of origin is defined by the shift vector

p " p1a ( p2b ( p3c"

The basis vectors a, b, c are fixed at the origin O; the new basis
vectors are fixed at the new origin O& which has the coordinates
p1, p2, p3 in the old coordinate system (Fig. 5.1.3.1).

For a pure origin shift, the basis vectors do not change their lengths
or orientations. In this case, the transformation matrix P is the unit
matrix I and the symbol of the pure shift becomes (I, p).

78
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5.1. Transformations of the coordinate system (unit-cell transformations)
BY H. ARNOLD

5.1.1. Introduction

There are two main uses of transformations in crystallography.
(i) Transformation of the coordinate system and the unit cell

while keeping the crystal at rest. This aspect forms the main topic of
the present part. Transformations of coordinate systems are useful
when nonconventional descriptions of a crystal structure are
considered, for instance in the study of relations between different
structures, of phase transitions and of group–subgroup relations.
Unit-cell transformations occur particularly frequently when
different settings or cell choices of monoclinic, orthorhombic or
rhombohedral space groups are to be compared or when ‘reduced
cells’ are derived.

(ii) Description of the symmetry operations (motions) of an
object (crystal structure). This involves the transformation of the
coordinates of a point or the components of a position vector while
keeping the coordinate system unchanged. Symmetry operations are
treated in Chapter 8.1 and Part 11. They are briefly reviewed in
Chapter 5.2.

5.1.2. Matrix notation

Throughout this volume, matrices are written in the following
notation:

As (1 ! 3) row matrices:

(a, b, c) the basis vectors of direct space
(h, k, l) the Miller indices of a plane (or a set of

planes) in direct space or the coordinates
of a point in reciprocal space

As (3 ! 1) or (4 ! 1) column matrices:
x " #x!y!z$ the coordinates of a point in direct space
#a%!b%!c%$ the basis vectors of reciprocal space
(u!v!w) the indices of a direction in direct space
p" #p1!p2!p3$ the components of a shift vector from

origin O to the new origin O &

q" #q1!q2!q3$ the components of an inverse origin
shift from origin O & to origin O, with
q" ' P' 1p

w " #w1!w2!w3$ the translation part of a symmetry
operation ! in direct space

! " #x!y!z!1$ the augmented #4 ! 1$ column matrix of
the coordinates of a point in direct space

As (3 ! 3) or (4 ! 4) square matrices:
P, Q " P' 1 linear parts of an affine transformation;

if P is applied to a #1 ! 3$ row matrix,
Q must be applied to a #3 ! 1$ column
matrix, and vice versa

W the rotation part of a symmetry
operation ! in direct space

" " P p
o 1

! "
the augmented affine #4 ! 4 $ trans-
formation matrix, with o" #0, 0, 0$

# " Q q
o 1

! "
the augmented affine #4 ! 4 $ trans-
formation matrix, with # " "' 1

$ " W w
o 1

! "
the augmented #4 ! 4 $ matrix of a
symmetry operation in direct space (cf.
Chapter 8.1 and Part 11).

5.1.3. General transformation

Here the crystal structure is considered to be at rest, whereas the
coordinate system and the unit cell are changed. Specifically, a
point X in a crystal is defined with respect to the basis vectors a, b, c
and the origin O by the coordinates x, y, z, i.e. the position vector r
of point X is given by

r " xa ( yb ( zc

" #a, b, c$
x

y

z

#

$%

&

'("

The same point X is given with respect to a new coordinate system,
i.e. the new basis vectors a&, b&, c& and the new origin O& (Fig.
5.1.3.1), by the position vector

r& " x&a& ( y&b& ( z&c&"

In this section, the relations between the primed and unprimed
quantities are treated.

The general transformation (affine transformation) of the
coordinate system consists of two parts, a linear part and a shift
of origin. The #3 ! 3$ matrix P of the linear part and the #3 ! 1$
column matrix p, containing the components of the shift vector p,
define the transformation uniquely. It is represented by the symbol
(P, p).

(i) The linear part implies a change of orientation or length or
both of the basis vectors a, b, c, i.e.

#a&, b&, c&$ " #a, b, c$P

" #a, b, c$
P11 P12 P13

P21 P22 P23

P31 P32 P33

#

$%

&

'(

" #P11a ( P21b ( P31c,

P12a ( P22b ( P32c,

P13a ( P23b ( P33c$"

For a pure linear transformation, the shift vector p is zero and the
symbol is (P, o).

The determinant of P, det#P$, should be positive. If det#P$ is
negative, a right-handed coordinate system is transformed into a
left-handed one (or vice versa). If det#P$ " 0, the new basis vectors
are linearly dependent and do not form a complete coordinate
system.

In this chapter, transformations in three-dimensional space are
treated. A change of the basis vectors in two dimensions, i.e. of the
basis vectors a and b, can be considered as a three-dimensional
transformation with invariant c axis. This is achieved by setting
P33 " 1 and P13 " P23 " P31 " P32 " 0.

(ii) A shift of origin is defined by the shift vector

p " p1a ( p2b ( p3c"

The basis vectors a, b, c are fixed at the origin O; the new basis
vectors are fixed at the new origin O& which has the coordinates
p1, p2, p3 in the old coordinate system (Fig. 5.1.3.1).

For a pure origin shift, the basis vectors do not change their lengths
or orientations. In this case, the transformation matrix P is the unit
matrix I and the symbol of the pure shift becomes (I, p).
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(i) linear part: change of orientation or length:

(ii) origin shift by a shift vector p(p1,p2,p3): 
the origin O’ has 
coordinates (p1,p2,p3) in 
the old coordinate system 

O’ = O + p

Transformation matrix-column pair (P,p)



EXAMPLE



EXAMPLE



1/2 1/2 0

-1/2 1/2 0

0 0 1

1/2

1/4

0

(P,p)=( ) 1 -1 0

1 1 0

0 0 1

-1/4

-3/4

0

(P,p)-1=( )
Transformation matrix-column pair (P,p)

a’=1/2a-1/2b
b’=1/2a+1/2b

c’=c

O’=O+

a=a’+b’
b=-a’+b’
c=c’

1/2

1/4

0

O=O’+
-1/4

-3/4

0



atomic coordinates X(x,y,z):

=
P11 P12 P13

P21 P22 P23

P31 P32 P33

x
y
z

p1
p2
p3( )

(X’)=(P,p)-1(X)
           =(P-1, -P-1p)(X)

x´

y
z

-1

Co-ordinate transformations in crystallography

Transformation of space-group operations (W,w) by (P,p):

(W’,w’)=(P,p)-1(W,w)(P,p)

unit cell parameters: G:    G´=Pt G P

Structure-description transformation by (P,p)

metric 
tensor



Short-hand notation for the description 
of transformation matrices

Transformation matrix:

-coefficients 0, +1, -1
-different columns in one line 

notation rules:

example: 1 -1

1 1

1

-1/4

-3/4

0

a+b, -a+b, c;-1/4,-3/4,0{

Also, the inverse matrices of P and pare needed. They are

Q ! P"1

and

q! "P"1p!

The matrix qconsists of the components of the negative shift vector
q which refer to the coordinate system a#, b#, c#, i.e.

q ! q1a# $ q2b# $ q3c#!

Thus, the transformation (Q, q) is the inverse transformation of
(P, p). Applying (Q, q) to the basis vectors a#, b#, c# and the origin
O#, the old basis vectors a, b, c with origin O are obtained.

For a two-dimensional transformation of a# and b#, some
elements of Q are set as follows: Q33 ! 1 and
Q13 ! Q23 ! Q31 ! Q32 ! 0.

The quantities which transform in the same way as the basis
vectors a, b, c are called covariant quantities and are written as row
matrices. They are:

the Miller indices of a plane (or a set of planes), (hkl), in direct
space and

the coordinates of a point in reciprocal space, h, k, l.

Both are transformed by

%h#, k#, l#& ! %h, k, l&P!

Usually, the Miller indices are made relative prime before and after
the transformation.

The quantities which are covariant with respect to the basis
vectors a, b, c are contravariant with respect to the basis vectors
a', b', c' of reciprocal space.

The basis vectors of reciprocal space are written as a column
matrix and their transformation is achieved by the matrix Q:

a'#

b'#

c'#

!

"#

$

%& ! Q

a'

b'

c'

!

"#

$

%&

!
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

!

"#

$

%&
a'

b'

c'

!

"#

$

%&

!
Q11a' $ Q12b' $ Q13c'

Q21a' $ Q22b' $ Q23c'

Q31a' $ Q32b' $ Q33c'

!

"#

$

%&!

The inverse transformation is obtained by the inverse matrix

P ! Q"1:

a'

b'

c'

!

#

$

& ! P
a'#

b'#

c'#

!

#

$

&!

These transformation rules apply also to the quantities covariant
with respect to the basis vectors a', b', c' and contravariant with
respect to a, b, c, which are written as column matrices. They are the
indices of a direction in direct space, [uvw], which are transformed
by

u#

v#

w#

!

#

$

& ! Q
u
v
w

!

#

$

&!

In contrast to all quantities mentioned above, the components of a
position vector r or the coordinates of a point X in direct space
x, y, z depend also on the shift of the origin in direct space. The
general (affine) transformation is given by

x#

y#

z#

!

"#

$

%& ! Q

x

y

z

!

"#

$

%& $ q

!
Q11x $ Q12y $ Q13z $ q1

Q21x $ Q22y $ Q23z $ q2

Q31x $ Q32y $ Q33z $ q3

!

"#

$

%&!

Example

If no shift of origin is applied, i.e. p! q! o, the position vector
r of point X is transformed by

r# ! %a, b, c&PQ
x
y
z

!

#

$

& ! %a#, b#, c#&
x#

y#

z#

!

#

$

&!

In this case, r ! r#, i.e. the position vector is invariant, although
the basis vectors and the components are transformed. For a pure
shift of origin, i.e. P ! Q ! I , the transformed position vector r#
becomes

r# ! %x $ q1&a $ %y $ q2&b $ %z $ q3&c
! r $ q1a $ q2b $ q3c
! %x " p1&a $ %y " p2&b $ %z " p3&c
! r " p1a " p2b " p3c!

Here the transformed vector r# is no longer identical with r.

It is convenient to introduce the augmented %4 ( 4 & matrix !
which is composed of the matrices Q and qin the following manner
(cf. Chapter 8.1):

! ! Q q
o 1

' (
!

Q11 Q12 Q13 q1

Q21 Q22 Q23 q2

Q31 Q32 Q33 q3

0 0 0 1

!

""#

$

%%&

with othe %1 ( 3& row matrix containing zeros. In this notation, the
transformed coordinates x#, y#, z# are obtained by

Fig. 5.1.3.1. General affine transformation, consisting of a shift of origin
from O to O# by a shift vector p with components p1 and p2 and a change
of basis from a, b to a#, b#. This implies a change in the coordinates of
the point X from x, y to x#, y#.
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P11 P12 P13

P21 P22 P23

P31 P32 P33

p1

p2

p3

(P,p)=

(a,b,c), origin O

(a’,b’,c’), origin O’

( )
-written by columns

-origin shift 



Problem 2.5EXERCISES

The following matrix-column pairs (W,w) are 
referred with respect to a basis (a,b,c):

(1) x,y,z (2) -x,y+1/2,-z+1/2
(3) -x,-y,-z (4) x,-y+1/2, z+1/2

(i) Determine the corresponding matrix-column pairs 
(W’,w’) with respect to the basis (a’,b’,c’)= (a,b,c)P, 
with P=c,a,b.  
(ii) Determine the coordinates X’ of a  point 
with respect to the new basis (a’,b’,c’).

0,70

0,31

0,95

X=

(W’,w’)=(P,p)-1(W,w)(P,p)

(X’)=(P,p)-1(X)

Hints



ITA-settings
symmetry data

Transformation 
of the basis

Generators
General positions

GENPOS

space group

Bilbao Crystallographic Server

Co-ordinate transformations 
in crystallography

Problem:



Example GENPOS: 

default setting C12/c1

final setting A112/a

(W,w)A112/a=
(P,p)-1(W,w)C12/c1(P,p)



Example GENPOS: ITA settings of C2/c(15)

default setting A112/a setting



Problem 2.5EXERCISES

Consider the space group P21/c (No. 14). Show that the 
relation between the General and Special position data of 
P1121/a (setting unique axis c ) can be obtained from the data 
P121/c1(setting unique axis b ) applying the transformation 
(a’,b’,c’)c = (a,b,c)bP, with P= c,a,b.

Use the retrieval tools GENPOS (generators and general 
positions) for accessing the space-group data. Get the data 
on general positions in different settings either by 
specifying transformation matrices to new bases, or by 
selecting one of the 530 settings of the monoclinic and 
orthorhombic groups listed in ITA.



Problem 2.6EXERCISES

Use the retrieval tools GENPOS or Generators and General 
positions, for accessing the space-group data on the Bilbao 
Crystallographic Server or Symmetry Database server. Get the 
data on general and special positions in different settings 
either by specifying transformation matrices to new bases, 
or by selecting one of the 530 settings of the monoclinic 
and orthorhombic groups listed in ITA.

Consider the General position data of the space group Im-3m 
(No. 229). Using the option Non-conventional setting obtain the 
matrix-column pairs of the symmetry operations with 
respect to a primitive basis, applying the transformation 
(a’,b’,c’) = 1/2(-a+b+c,a-b+c,a+b-c)


