Topological Matter School 2018

Lecture Course GROUP THEORY AND TOPOLOGY

Donostia - San Sebastian

23-26 August 2018

SPACE-GROUP SYMMETRY

SYMMETRY DATABASES OF BILBAO CRYSTALLOGRAPHIC SERVER

Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

Universidad Euskal Herriko del País Vasco Unibertsitatea

SPACE GROUPS

Crystal pattern: infinite, idealized crystal structure (without disorder, dislocations, impurities, etc.)

Space group G: The set of all symmetry operations (isometries) of a crystal pattern

Translation subgroup $H \triangleleft G$: The infinite set of all translations that are symmetry operations of the crystal pattern

Point group of the space groups P_G:

The factor group of the space group G with respect to the translation subgroup T: $P_G \cong G/H$

INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY VOLUME A: SPACE-GROUP SYMMETRY

Extensive tabulations and illustrations of the 17 plane groups and of the 230 space groups

headline with the relevant group symbols;

- diagrams of the symmetry elements and of the general position;
- •specification of the origin and the asymmetric unit;
- list of symmetry operations;
- •generators;
- •general and special positions with multiplicities, site symmetries, coordinates and reflection conditions;
- symmetries of special projections;

Sixth edition

WILEY

HERMANN-MAUGUIN SYMBOLISM

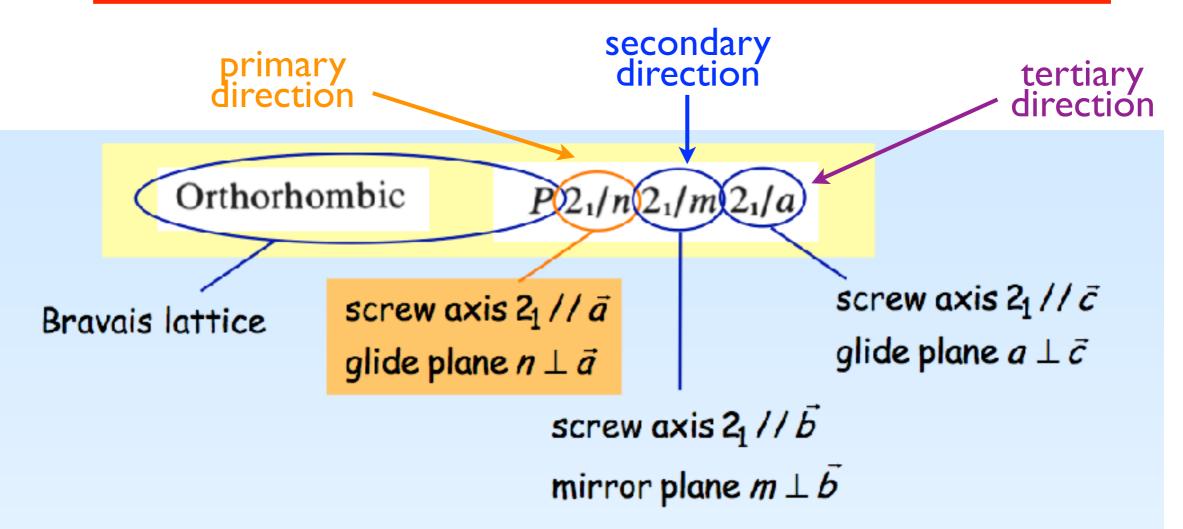
Hermann-Mauguin symbols for space groups

- centring type

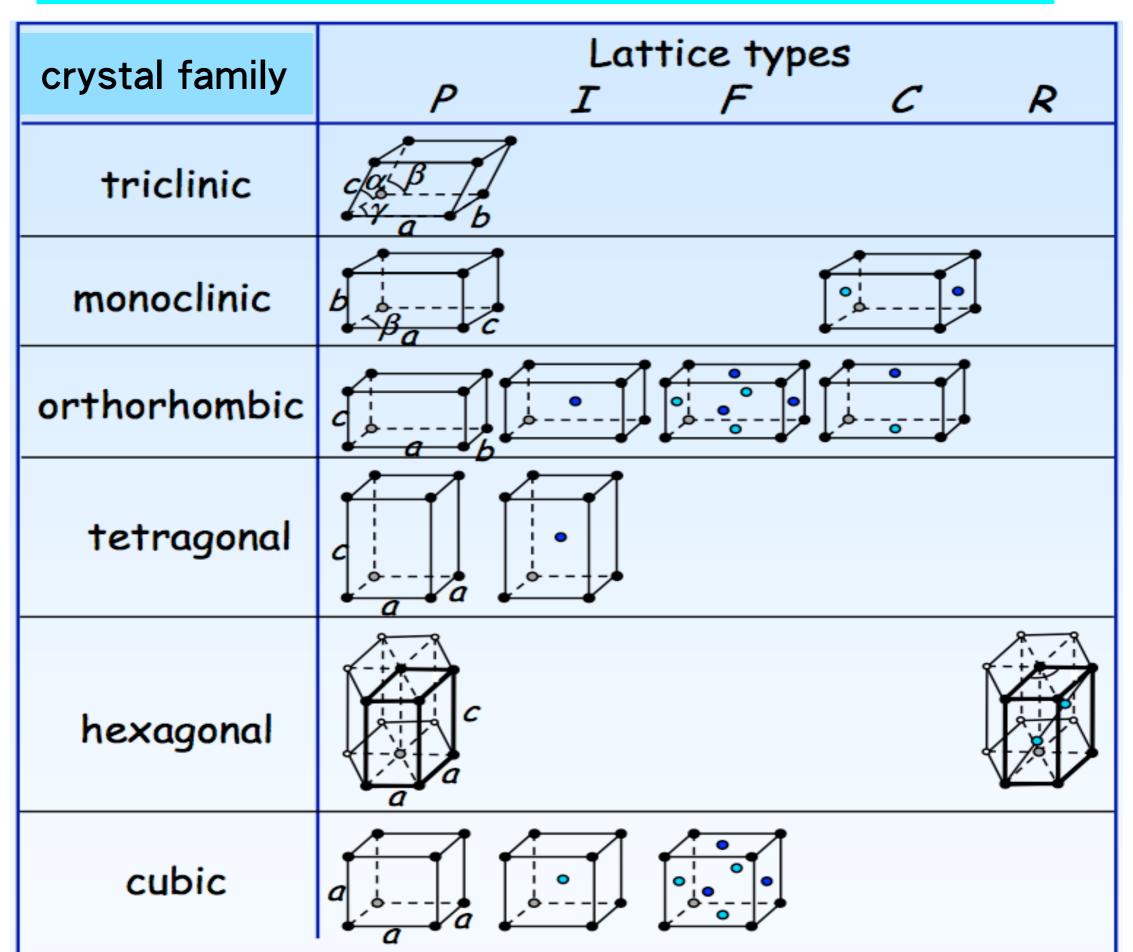
-symmetry elements along primary, secondary and ternary symmetry directions rotations: by the axes of rotation

- planes: by the normals to the planes
- rotations/planes along the same direction

A direction is called a **symmetry direction** of a crystal structure if it is parallel to an axis of rotation or rotoinversion or if it is parallel to the normal of a reflection plane.



14 Bravais Lattices



Hermann-Mauguin symbols for space groups

Directions that belong to the same set of equivalent symmetry directions are collected between braces. The first entry in each set is taken as the representative of that set.

	Symmetry direction (position in Hermann– Mauguin symbol)		
Lattice	Primary	Secondary	Tertiary
Triclinic	None		
Monoclinic*	[010] ('unique axis b') [001] ('unique axis c')		
Orthorhombic	[100]	[010]	[001]
Tetragonal	[001]	$\left\{ \begin{bmatrix} 100 \\ 010 \end{bmatrix} \right\}$	$\left\{ \begin{bmatrix} 1\bar{1}0\\ [110] \end{bmatrix} \right\}$
Hexagonal	[001]	$\left\{ \begin{array}{c} [100] \\ [010] \\ [\bar{1}\bar{1}0] \end{array} \right\}$	$\left\{\begin{array}{c} [1\bar{1}0]\\ [120]\\ [\bar{2}\bar{1}0] \end{array}\right\}$
Rhombohedral (hexagonal axes)	[001]	$\left\{ \begin{array}{c} [100] \\ [010] \\ [\bar{1}\bar{1}0] \end{array} \right\}$	
Rhombohedral (rhombohedral axes)	[111]	$\left\{\begin{array}{c} [1\overline{1}0]\\ [01\overline{1}]\\ [\overline{1}01] \end{array}\right\}$	
Cubic	$\left\{\begin{array}{c} [100]\\[010]\\[001]\end{array}\right\}$	$\left\{\begin{array}{c} [111]\\ [1\bar{1}\bar{1}]\\ [\bar{1}1\bar{1}]\\ [\bar{1}1\bar{1}]\\ [\bar{1}\bar{1}1] \end{array}\right\}$	$\left\{ \begin{array}{c} [1\bar{1}0] \ [110] \\ [01\bar{1}] \ [011] \\ [\bar{1}01] \ [101] \end{array} \right\}$

SPACE-GROUP SYMMETRY OPERATIONS

Symmetry Operations Characteristics

TYPE of the symmetry operation

preserve or not *handedness*

SCREW/GLIDE component

GEOMETRIC ELEMENT

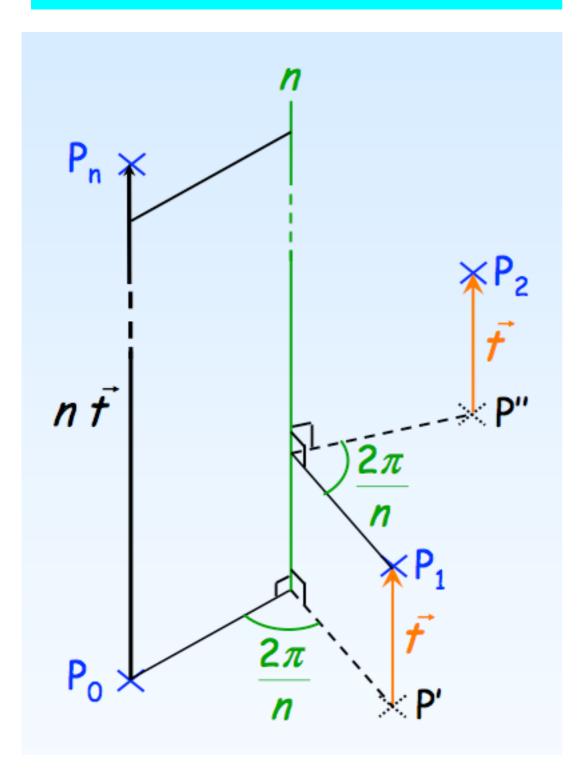
ORIENTATION of the geometric element

LOCATION of the geometric element

Crystallographic symmetry operations				
characteristics:	fixed points of isor geometric ele	metries (W,w)X _f =X _f ements		
Types of isometries preserve handedness				
identity: the whole space fixed				
translation t:	no fixed point	$ ilde{\mathbf{x}} = \mathbf{x} + \mathbf{t}$		
rotation:	one line fixed rotation axis	$\phi = k \times 360^{\circ}/N$		
screw rotation:	no fixed point screw axis	screw vector		

Crystallographic symmetry operations

Screw rotation



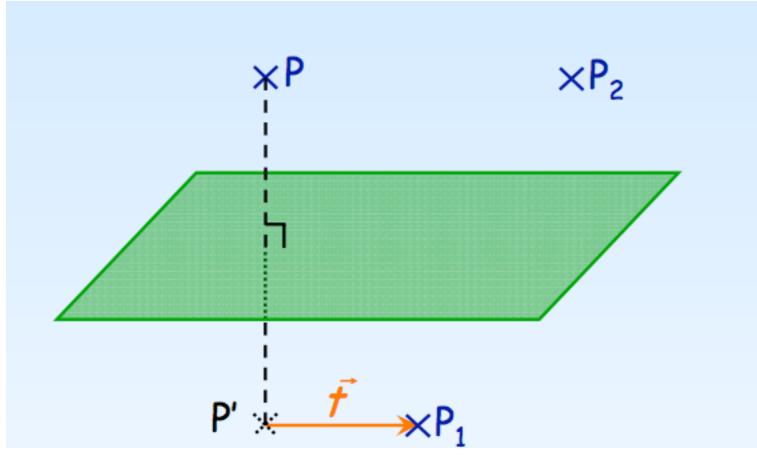
n-fold rotation followed by a fractional translation $\frac{p}{n}$ **t** parallel to the rotation axis

Its application *n* times results in a translation parallel to the rotation axis

	Types of	^r isometries pre	do r eserve ha	not andedness	
charac	teristics:	fixed points of is geometric		(W,w)X _f =>	≺ f
roto-	inversion:	centre of roto-inversion fixed roto-inversion axis			
inv	version:	centre of inversion fixed			
re	flection:	plane fixed reflection/mirror plane			
glide I	reflection:	no fixed poin glide plane		glide vector	

Crystallographic symmetry operations

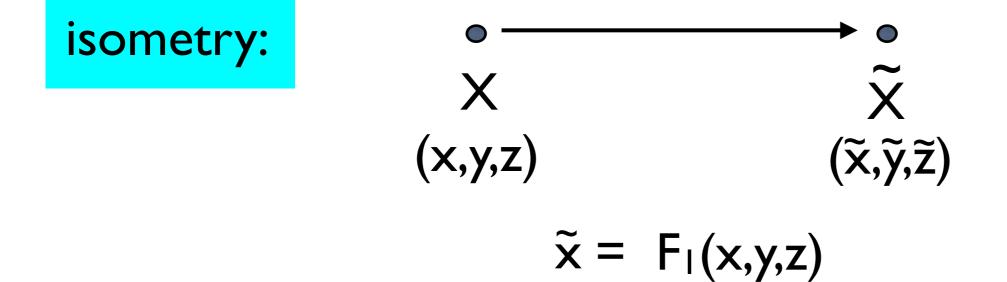
Glide plane



reflection followed by a fractional translation $\frac{1}{2}$ **t** parallel to the plane

Its application 2 times results in a translation parallel to the plane **Description of isometries**

coordinate system:
$$\{O, \mathbf{a}, \mathbf{b}, \mathbf{c}\}$$



$$egin{array}{rcl} ilde{x} &=& W_{11}\,x + W_{12}\,y + W_{13}\,z + w_1 \ ilde{y} &=& W_{21}\,x + W_{22}\,y + W_{23}\,z + w_2 \ ilde{z} &=& W_{31}\,x + W_{32}\,y + W_{33}\,z + w_3 \end{array}$$

Matrix-column presentation of isometries

$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} = \begin{pmatrix} W_{11}W_{12}W_{13} \\ W_{21}W_{22}W_{23} \\ W_{31}W_{32}W_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$$

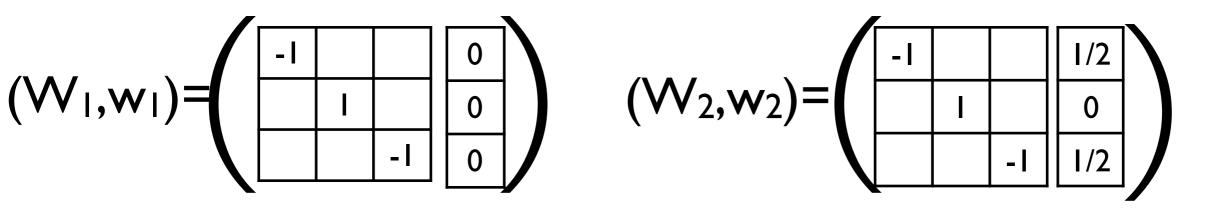
$$\begin{array}{c} \text{linear/matrix} \\ \text{part} \end{array} \quad \begin{array}{c} \text{translation} \\ \text{column part} \end{array}$$

$$ilde{m{x}} = m{W} \, m{x} + m{w}$$

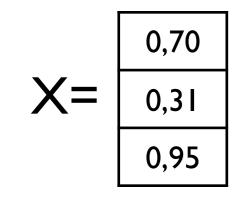
 $ilde{m{x}} = (m{W}, m{w}) m{x}$ or $ilde{m{x}} = \{m{W} \mid m{w}\} m{x}$ matrix-column Seitz symbol pair

EXERCISES

Referred to an 'orthorhombic' coordinated system ($a \neq b \neq c$; $\alpha = \beta = \gamma = 90$) two symmetry operations are represented by the following matrix-column pairs:



Determine the images X_i of a point X under the symmetry operations (W_i , w_i) where

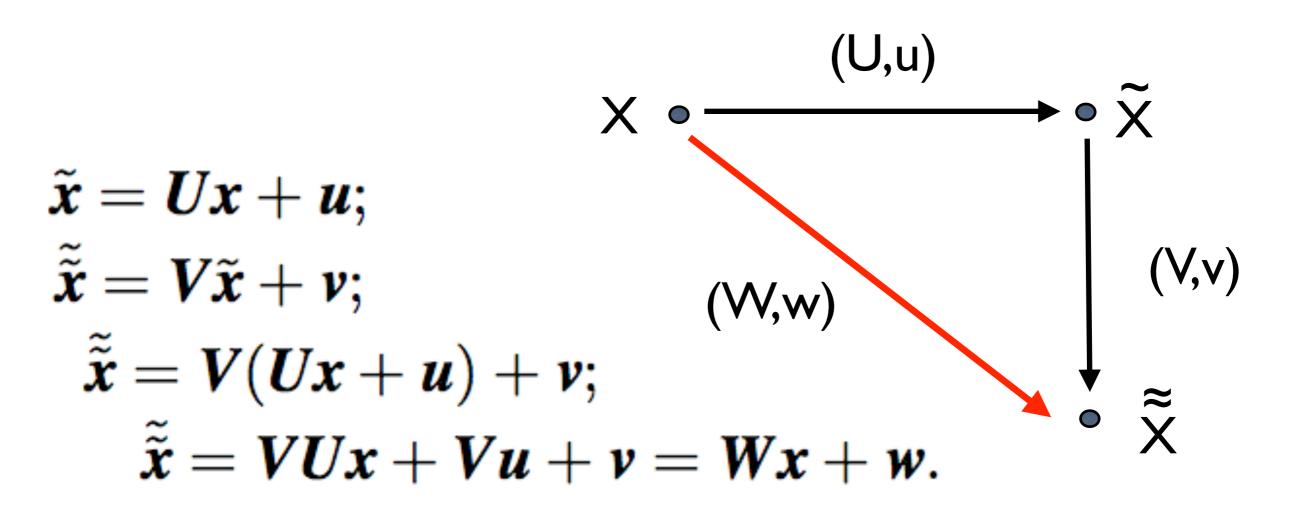


Can you guess what is the geometric 'nature' of (W_1, w_1) ? And of (W_2, w_2) ?

Hint: A drawing could

A drawing could be rather helpful

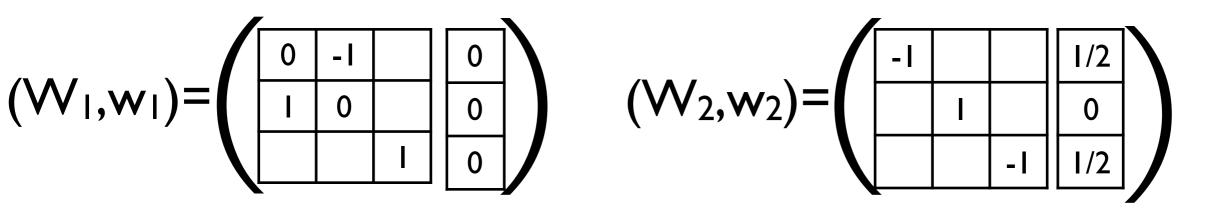
Combination of isometries



$$\widetilde{\widetilde{x}} = (V, v) \widetilde{x} = (V, v) (U, u) x = (W, w) x.$$

$$(\boldsymbol{W}, \boldsymbol{w}) = (\boldsymbol{V}, \boldsymbol{v})(\boldsymbol{U}, \boldsymbol{u}) = (\boldsymbol{V}\boldsymbol{U}, \boldsymbol{V}\boldsymbol{u} + \boldsymbol{v}).$$

Consider the matrix-column pairs of the two symmetry operations:



Determine and compare the matrix-column pairs of the combined symmetry operations:

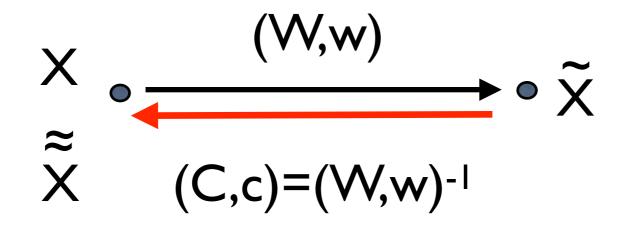
$$(W,w) = (W_1,w_1)(W_2,w_2)$$

 $(W,w)' = (W_2,w_2)(W_1,w_1)$

combination of isometries:

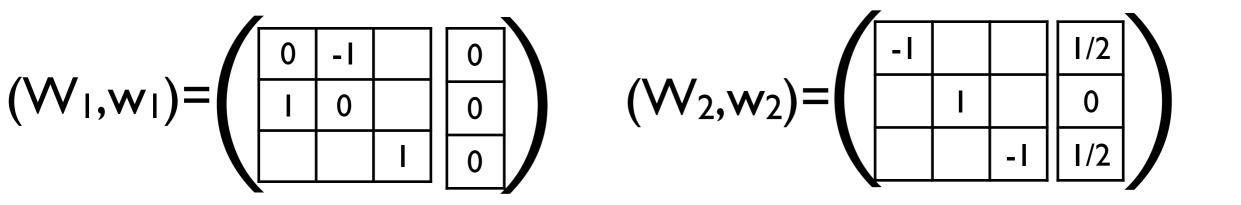
$$(\boldsymbol{W}_{2}, \, \boldsymbol{w}_{2}) \, (\boldsymbol{W}_{1}, \, \boldsymbol{w}_{1}) = (\, \boldsymbol{W}_{2} \, \, \boldsymbol{W}_{1}, \, \, \boldsymbol{W}_{2} \, \boldsymbol{w}_{1} + \boldsymbol{w}_{2})$$

Inverse isometries



(C,c)(W,w) = (I,o) (C,c)(W,w) = (CW, Cw+c) CW=I CW=I $C=W^{-1}$ $C=W^{-1}$ CW=I $C=-Cw=-W^{-1}w$

Determine the inverse symmetry operations $(W_1, w_1)^{-1}$ and $(W_2, w_2)^{-1}$ where



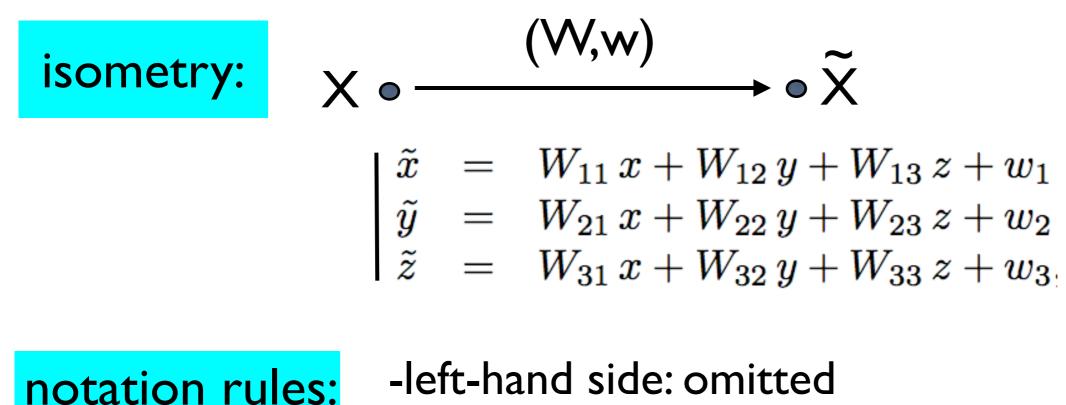
Determine the inverse symmetry operation (W,w)-I

 $(W,w) = (W_1,w_1)(W_2,w_2)$

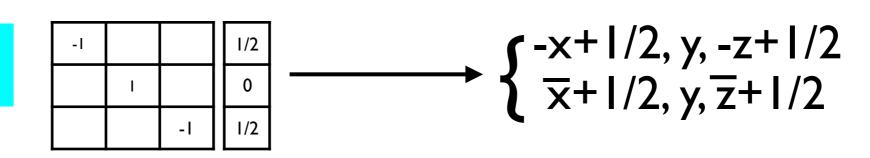
inverse of isometries:

$$(\boldsymbol{W}, \, \boldsymbol{w})^{-1} = (\, \boldsymbol{W}^{-1}, \, - \, \boldsymbol{W}^{-1} \, \boldsymbol{w})$$

Short-hand notation for the description of isometries



left-hand side: omitted
 -coefficients 0, +1, -1
 -different rows in one line

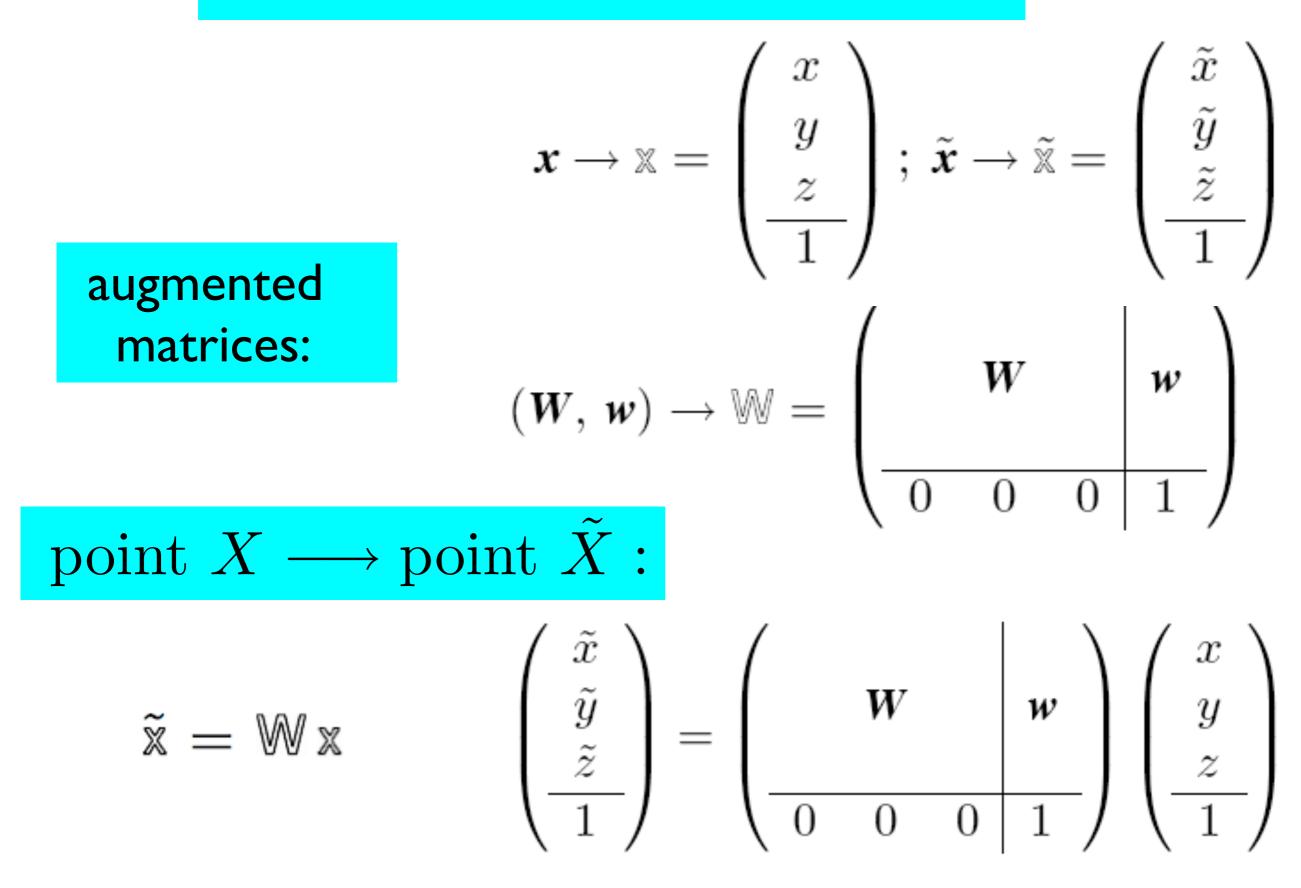


Construct the matrix-column pair (W,w) of the following coordinate triplets:

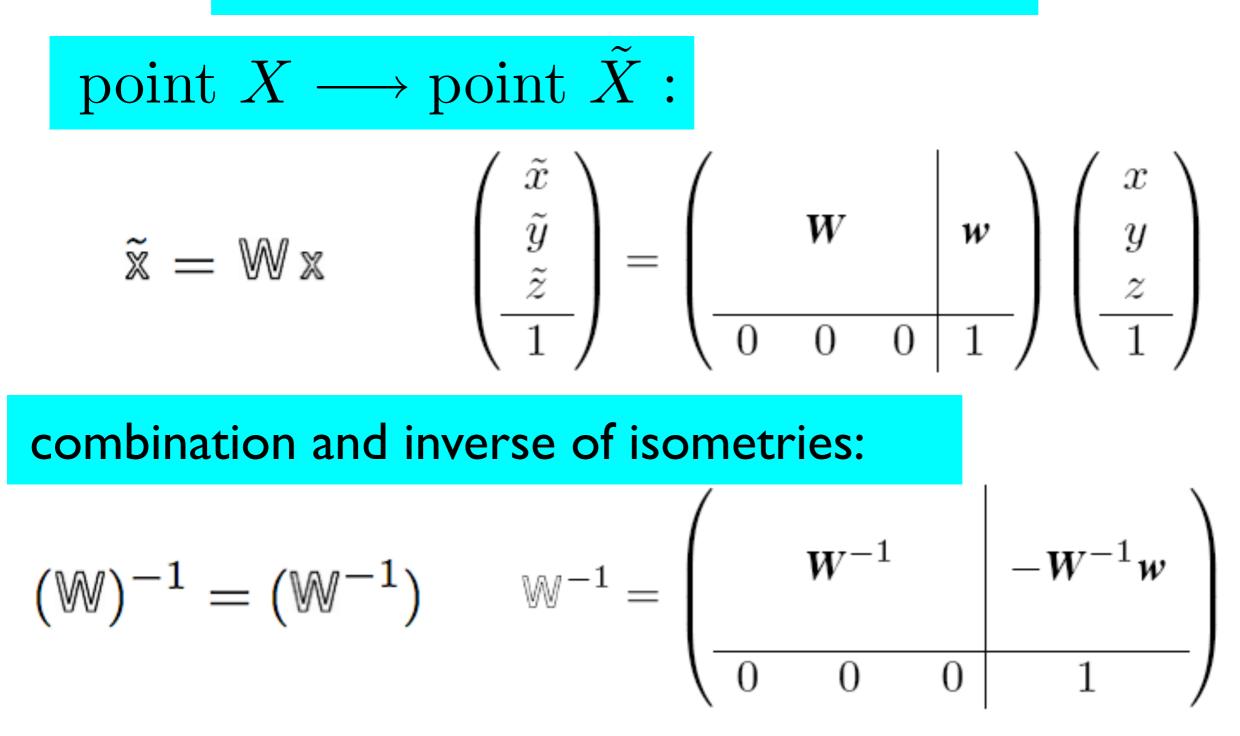
(1) x,y,z (2)
$$-x,y+1/2,-z+1/2$$

(3) $-x,-y,-z$ (4) $x,-y+1/2, z+1/2$

Matrix formalism: 4x4 matrices



4x4 matrices: general formulae



 $\mathbb{W}_3 = \mathbb{W}_2 \mathbb{W}_1$

PRESENTATION OF SPACE-GROUP SYMMETRY OPERATIONS

IN INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY, VOL.A

Space group Cmm2 (No. 35)

How are the symmetry operations represented in ITA ?

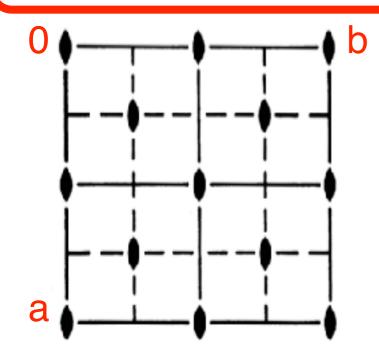
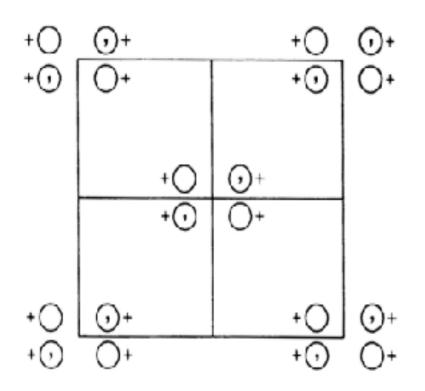


Diagram of symmetry elements

Symmetry operat	tions		
For (0,0,0)+ set (1) 1	(2) 2 0,0, <i>z</i>	(3) $m x, 0, z$	(4) m 0,y,z
For $(\frac{1}{2}, \frac{1}{2}, 0)$ + set (1) $t(\frac{1}{2}, \frac{1}{2}, 0)$	(2) 2 $\frac{1}{4}, \frac{1}{4}, z$	(3) $a x, \frac{1}{4}, z$	(4) $b = \frac{1}{4}, y, z$

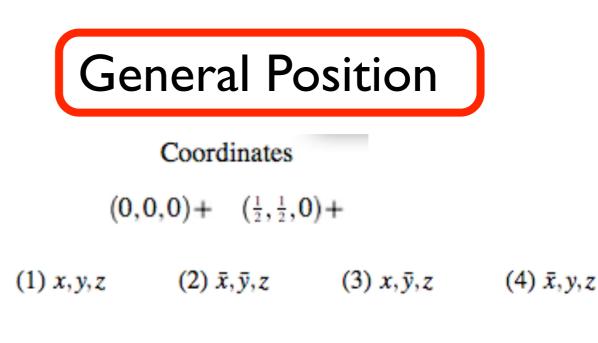
Diagram of general position points



f

1

8



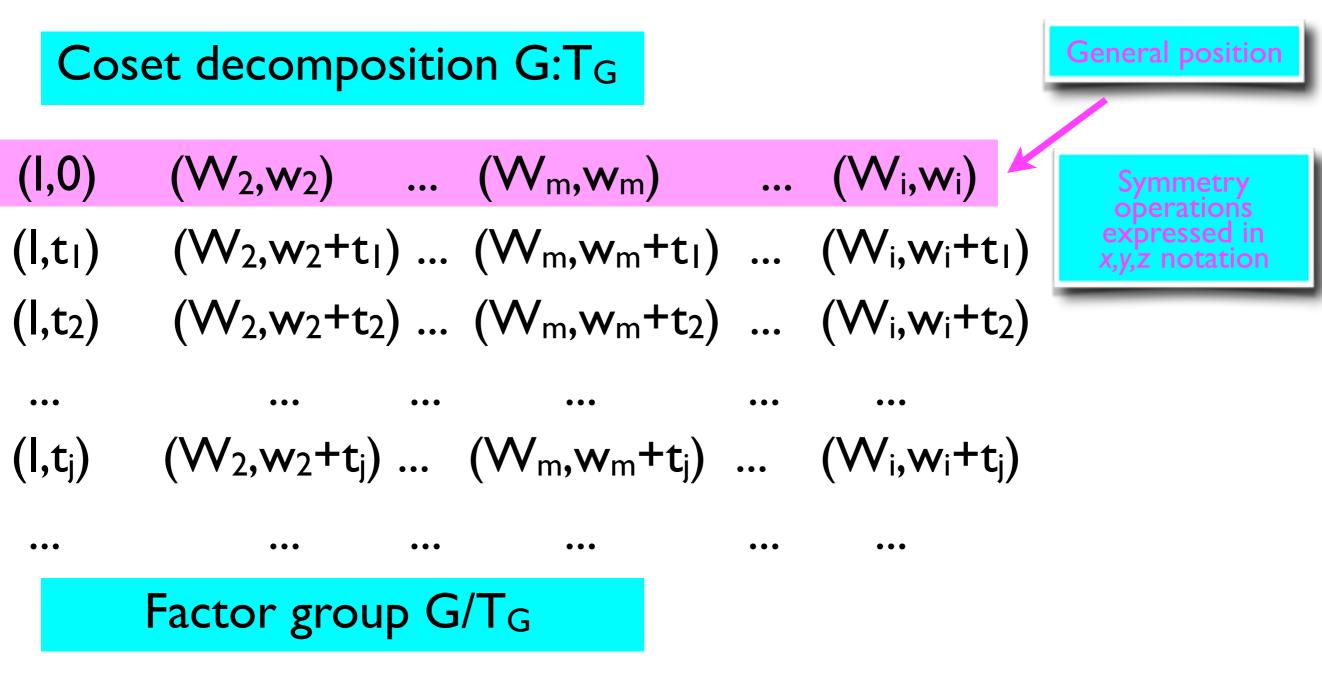
General position

(i) coordinate triplets of an image point \tilde{X} of the original point X= x under (W,w) of G -presentation of infinite image points \tilde{X} under the action of (W,w) of G

(ii) short-hand notation of the matrix-column pairs
 (W,w) of the symmetry operations of G

-presentation of infinite symmetry operations of G $(W,w) = (I,t_n)(W,w_0), 0 \le w_{i0} < I$

General Position of Space groups (infinite order)



isomorphic to the point group P_G of G Point group $P_G = \{I, W_2, W_3, ..., W_i\}$

Symmetry Operations Block

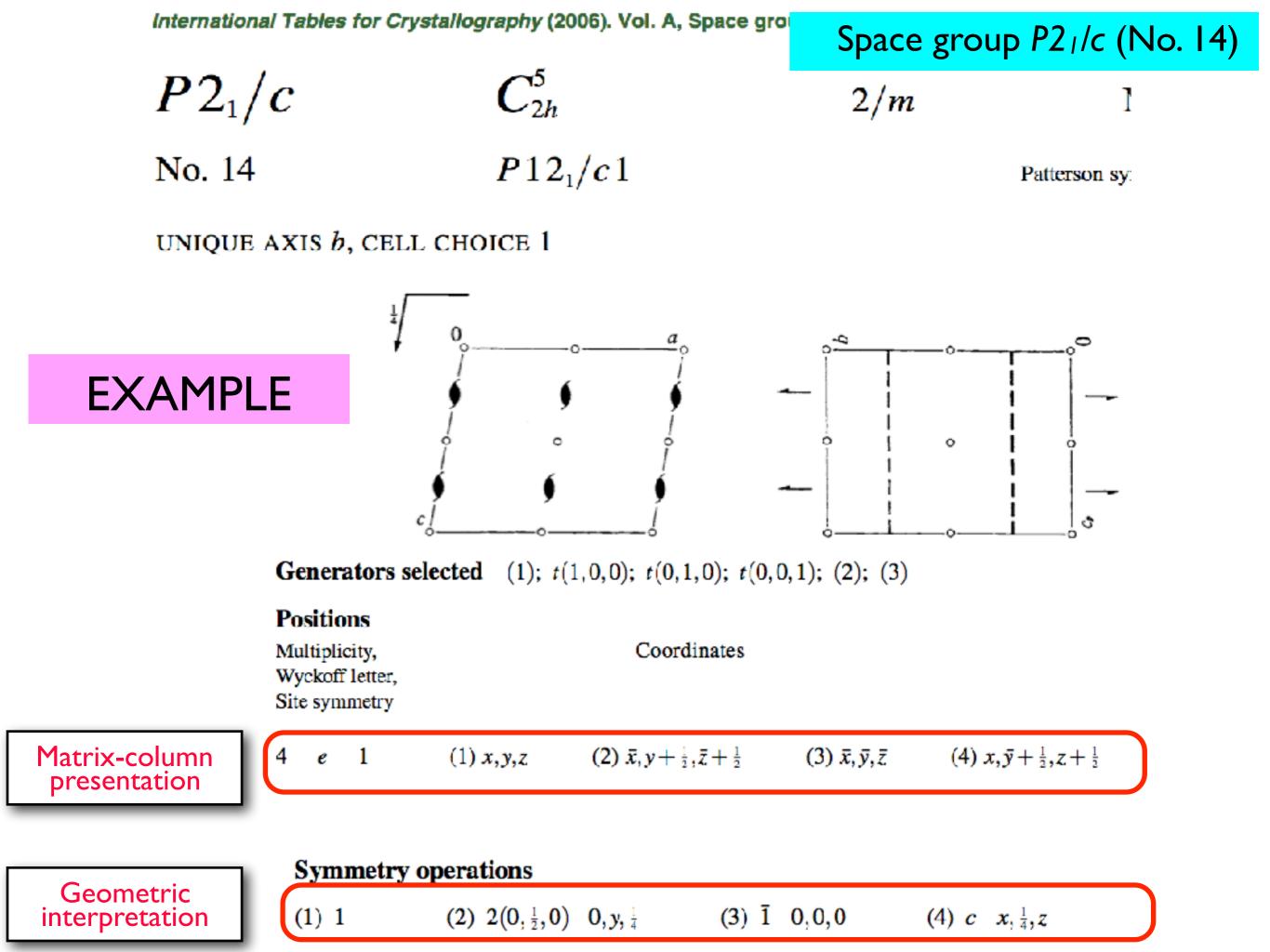
TYPE of the symmetry operation

SCREW/GLIDE component

ORIENTATION of the geometric element

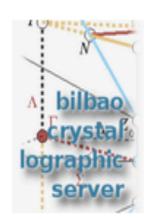
LOCATION of the geometric element

GEOMETRIC INTERPRETATION OF THE MATRIX-COLUMN PRESENTATION OF THE SYMMETRY OPERATIONS



BILBAO CRYSTALLOGRAPHIC SERVER

bilbao crystallographic server



ECM31-Oviedo Satellite

rystallography online: workshop on the e and applications of the structural tools of the Bilbao Crystallographic Server

20-21 August 2018

ews:

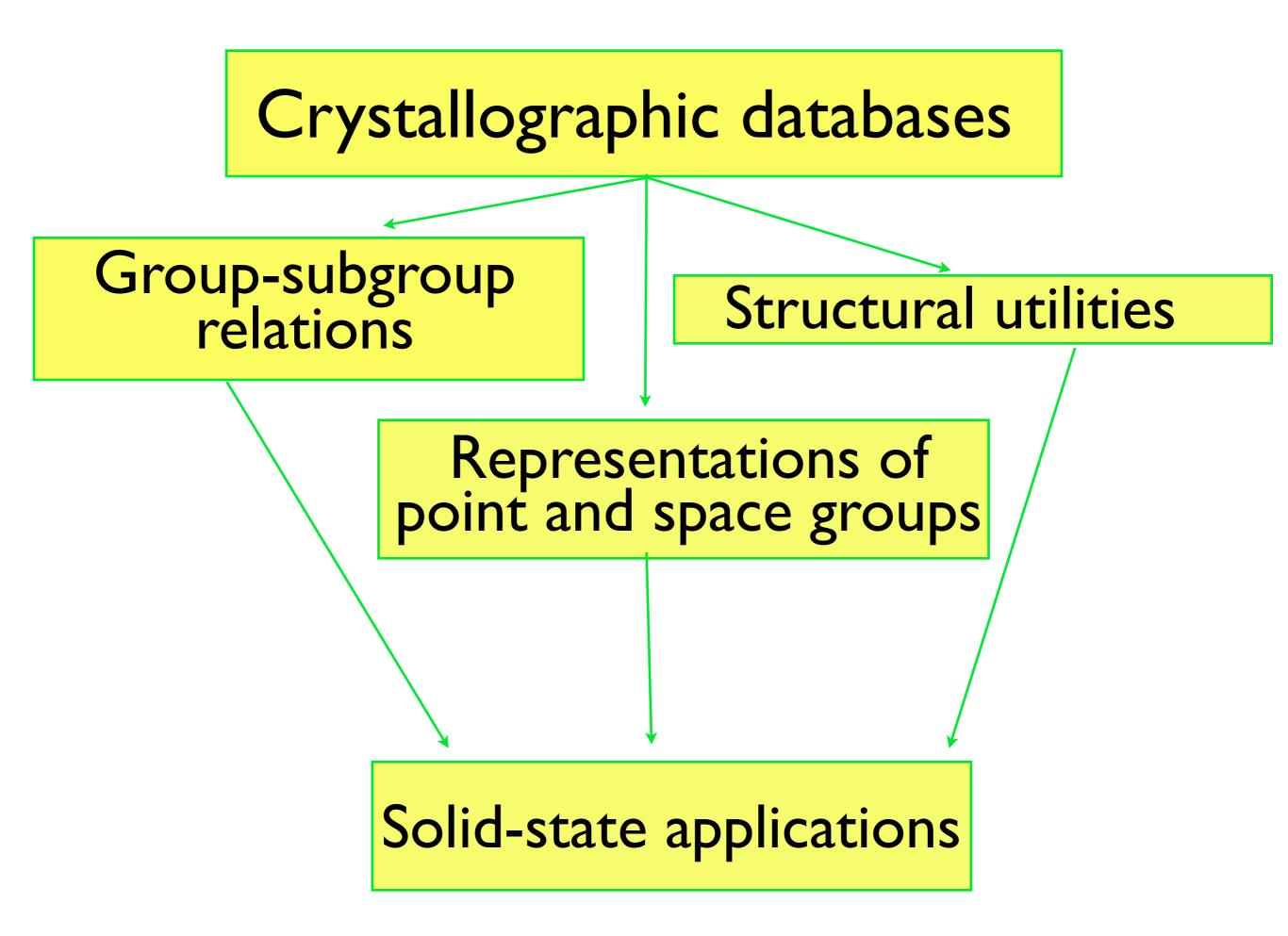
- New Article in Nature 07/2017: Bradlyn et al. "Topological quantum chemistry" Nature (2017). 547, 298-305.
- New program: BANDREP 04/2017: Band representations and Elementary Band representations of Double Space Groups.
- New section: Double point and space groups
 - New program: DGENPOS 04/2017: General positions of Double Space Groups
 - New program: REPRESENTATIONS DPG 04/2017: Irreducible representations of

Point-group symmetry

Plane-group symmetry

Crystallographic Databases

International Tables for Crystallography



bilbao crystallographic server

	Contact us	About us	Publications	How to cite the server
			Space-group symmetry	
A bilbao	GENPOS	Generators and Gene	ral Positions of Space Groups	
crystal	WYCKPOS	Wyckoff Positions of S	Space Groups	
louraphic	HKLCOND	Reflection conditions	of Space Groups	
server	MAXSUB	Maximal Subgroups of	f Space Groups	
	SERIES	Series of Maximal Iso	morphic Subgroups of Space Groups	
M31-Oviedo Satellite	WYCKSETS	Equivalent Sets of Wy	ckoff Positions	
	NORMALIZER	Normalizers of Space	Groups	
raphy online: workshop on		The k-vector types an	d Brillouin zones of Space Groups	
blications of the structural t	SYMMETRY OPERATIONS	Geometric interpretati	on of matrix column representations of symmetry of	operations
lbao Crystallographic Serve	IDENTIFY GROUP	Identification of a Spa	ce Group from a set of generators in an arbitrary s	etting
20.24 August 2040				

Structure Utilities

Subperiodic Groups: Layer, Rod and Frieze Groups

Structure Databases

Raman and Hyper-Raman scattering

Point-group symmetry

Plane-group symmetry

ECM

rystallogra e and appli of the Bilb

20-21 August 2018

ews:

- New Article in Nature 07/2017: Bradlyn et al. "Topological quantum chemistry" Nature (2017). 547, 298-305.
- New program: BANDREP 04/2017: Band representations and Elementary Band representations of Double Space Groups.
- New section: Double point and space groups
 - New program: DGENPOS 04/2017: General positions of Double Space Groups
 - New program: REPRESENTATIONS DPG 04/2017: Irradualble representations of

Finternational Tables for CRYSTALLOGRAPHY International Tables for Crystallography (2016). Vol. A, Space group 14, pp. 252–259.

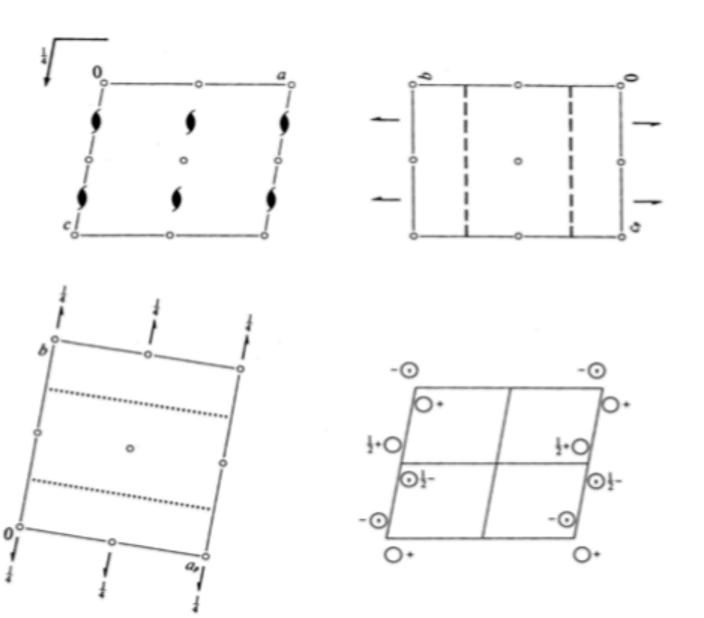
 $P2_1/c$ C_{2h}^5 2/m Monoclinic

No. 14

 $P12_{1}/c1$

Patterson symmetry P12/m1

UNIQUE AXIS b, CELL CHOICE 1



Origin at 1

Asymmetric unit $0 \le x \le 1$; $0 \le y \le \frac{1}{4}$; $0 \le z \le 1$

Symmetry operations

(1) 1 (2) $2(0, \frac{1}{2}, 0) = 0, y, \frac{1}{4}$ (3) $\overline{1} = 0, 0, 0$ (4) $c = x, \frac{1}{4}, z$

CONTINUED

No. 14 $P2_1/c$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Positions Multiplicity, Wyckoff letter, Site symmetry		licity, ff letter,		Coordinates		Reflection conditions		
3	ne sy	mmeu y					General:	
4	е	1	(1) <i>x</i> , <i>y</i> , <i>z</i>	(2) $\bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$	(3) $\bar{x}, \bar{y}, \bar{z}$	(4) $x, \bar{y} + \frac{1}{2}, z + \frac{1}{2}$	h0l: l = 2n 0k0: k = 2n 00l: l = 2n	
							Special: as above, plus	
2	d	ī	$\frac{1}{2}, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$			hkl: $k+l=2n$	
2	с	ī	$0, 0, \frac{1}{2}$	$0, \frac{1}{2}, 0$			hkl: $k+l=2n$	
2	b	ī	$\frac{1}{2}, 0, 0$	$\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$			hkl: k+l=2n	
2	а	ī	0,0,0	$0, \frac{1}{2}, \frac{1}{2}$			hkl: $k+l=2n$	

Symmetry of special projections

Along [001] <i>p</i> 2 <i>g m</i>	Along [100] <i>p</i> 2 <i>g g</i>	Along $[010]$ $p2$ Ideal $\mathbf{a}' = \frac{1}{2}\mathbf{c}$ $\mathbf{b}' = \mathbf{a}$ Origin at $0, y, 0$ Ideal	
$\mathbf{a}' = \mathbf{a}_{p}$ $\mathbf{b}' = \mathbf{b}$	$\mathbf{a}' = \mathbf{b}$ $\mathbf{b}' = \mathbf{c}_p$	$\mathbf{a}' = \frac{1}{2}\mathbf{c}$ $\mathbf{b}' = \mathbf{a}$	
Origin at $0, 0, z$	Origin at $x, 0, 0$	Origin at 0, y, 0	
÷	÷		1

Space-group symmetry Edited by Mois I. Aroyo

Sixth edition

Bilbao Crystallographic Server

Problem: Matrix-column presentation Geometrical interpretation

Generators and General Positions

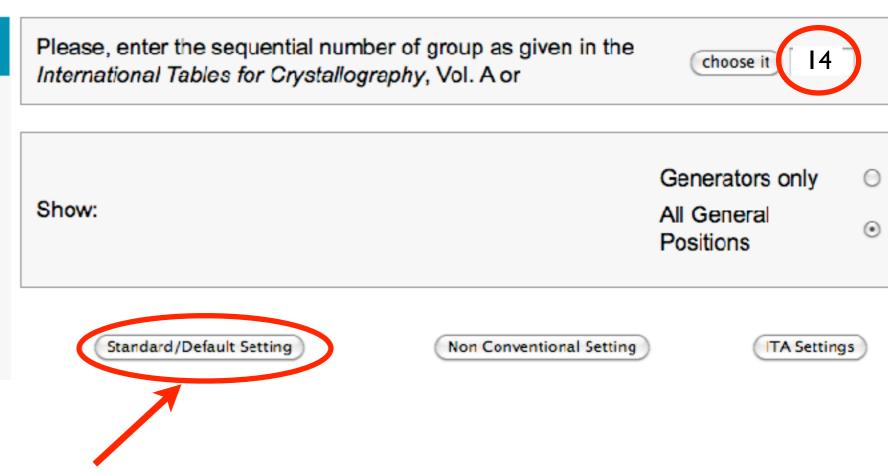
space group

GENPOS

How to select the group

The space groups are specified by their sequential number as given in the *International Tables for Crystallography*, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the button [choose it].

To see the data in a non conventional setting click on [Non conventional Setting] or [TTA Settings] for checking the non



Example GENPOS: Space group P2₁/c (14)

Space-group symmetry operations

General Positions of the Group 14 (P21/c) [unique axis b]

Click here to get the general positions in text format

short-hand notation

matrix-column
$$\begin{pmatrix} W_{11}W_{12}W_{13} \\ W_{21}W_{22}W_{23} \\ W_{31}W_{32}W_{33} \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$$

General positions

Symmetry operations

4 e 1

(1) 1

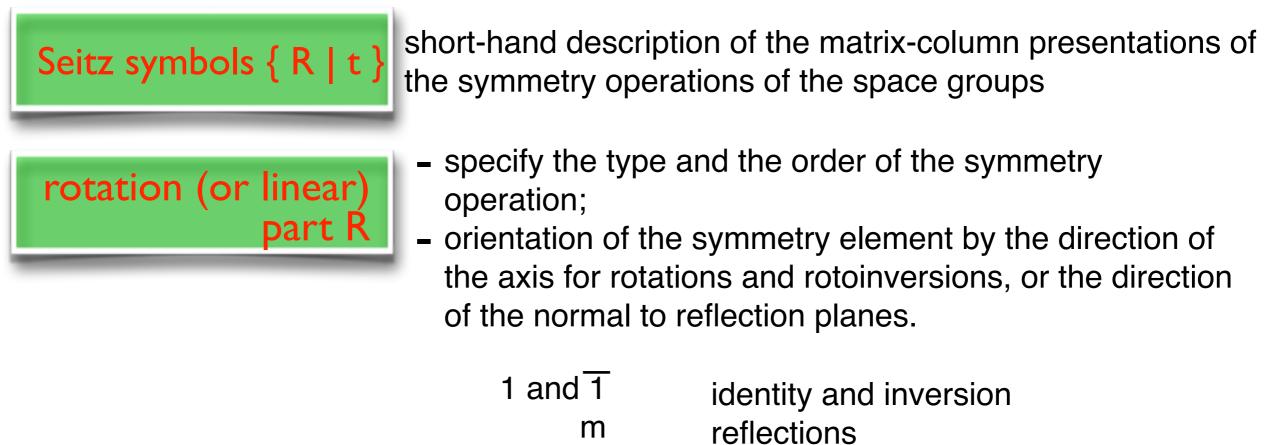
Geometric interpretation

Seitz symbols

				Symmetry	operation			
	No.	(x,y,z) form	Matrix form	ITA	Seitz			
$ \begin{pmatrix} w_{1} \\ w_{2} \\ w_{2} \\ w_{3} \\ w_{3} \end{pmatrix} \begin{pmatrix} w_{1} \\ w_{2} \\ w_{3} \end{pmatrix} $	1	x,y,z	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	1	{1 0}			
tion	2	-x,y+1/2,-z+1/2	$\left(\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	2 (0,1/2,0) 0, y,1/ 4	{ 2 ₀₁₀ 0 1/2 1/2 }			
	3	-x,-y,-z	$\left(\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right)$	-1 0,0,0	{-1 0}			
	4	x,-y+1/2,z+1/2	$\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & 1 & 1/2 \end{array}\right)$	c x,1/4,z	{ m ₀₁₀ 0 1/2 1/2 }			
sitions			1					
(1) x, y, z (2) $\bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$ (3) $\bar{x}, \bar{y}, \bar{z}$ (4) $x, \bar{y} + \frac{1}{2}, z + \frac{1}{2}$								
perations								
(2) $2(0,\frac{1}{2},0)$ $0,y,\frac{1}{4}$ (3) $\overline{1}$ $0,0,0$ (4) c $x,\frac{1}{4},z$								

ITA data

SEITZ SYMBOLS FOR SYMMETRY OPERATIONS



- 2, 3, 4 and 6 3, 4 and 6
- reflections rotations rotoinversions

translation parts of the coordinate triplets of the *General position* blocks

EXAMPLE

Seitz symbols for symmetry operations of hexagonal and trigonal crystal systems

	ITA descr	iption		Seitz		ITA descr	ription		Seitz
No.	coord. triplet	type	orien- tation	symbol	No.	coord. triplet	type	orien- tation	symbol
1)	<i>x</i> , <i>y</i> , <i>z</i>	1		1	13)	$\overline{x}, \overline{y}, \overline{z}$	ī		ī
2)	$\overline{y}, x-y, z$	3 ⁺	0,0, z	3 ⁺ ₀₀₁	14)	$y, \overline{x} + y, \overline{z}$	<u>3</u> +	0,0, z	$\overline{3}^{+}_{001}$
3)	$\overline{x} + y, \overline{x}, z$	3-	0,0 , z	3 ₀₀₁	15)	$x-y, x, \overline{z}$	3-	0,0,z	3 ₀₀₁
4)	$\overline{x}, \overline{y}, z$	2	0,0, z	2 ₀₀₁	16)	x, y, \overline{z}	m	<i>x</i> , <i>y</i> , 0	<i>m</i> ₀₀₁
5)	$y, \overline{x} + y, z$	6-	0,0, z	6 ⁻ ₀₀₁	17)	$\overline{y}, x-y, \overline{z}$	6-	0,0, z	$\bar{6}_{001}^{-}$
6)	x-y, x, z	6 +	0,0 , z	6 ⁺ ₀₀₁	18)	$\overline{x} + y, \overline{x}, \overline{z}$	6 ⁺	0,0, <i>z</i>	$\overline{6}^{+}_{001}$
7)	y, x, \overline{z}	2	<i>x</i> , <i>x</i> , 0	2 ₁₁₀	19)	$\overline{y}, \overline{x}, z$	m	x, \overline{x}, z	<i>m</i> ₁₁₀
8)	$x-y,\overline{y},\overline{z}$	2	<i>x</i> ,0,0	2 ₁₀₀	20)	$\overline{x} + y, y, z$	m	x, 2x, z	<i>m</i> ₁₀₀
9)	$\overline{x}, \overline{x} + y, \overline{z}$	2	0, y, 0	2 ₀₁₀	21)	x, x-y, z	m	2x, x, z	<i>m</i> ₀₁₀
10)	$\overline{y}, \overline{x}, \overline{z}$	2	$x, \overline{x}, 0$	2 ₁₁₀	22)	y , x, z	m	x , x, z	<i>m</i> ₁₁₀
11)	$\overline{x} + y, y, \overline{z}$	2	x, 2x, 0	2 ₁₂₀	23)	$x-y, \overline{y}, z$	m	<i>x</i> ,0, z	<i>m</i> ₁₂₀
12)	$x, x-y, \overline{z}$	2	2x, x, 0	2 ₂₁₀	24)	$\overline{x}, \overline{x} + y, z$	m	0, y, z	<i>m</i> ₂₁₀

Glazer et al. Acta Cryst A 70, 300 (2014)

	International Tables	for Crystallography (2006). Vol. A	A, Space gro	Space group P2	/c (No. 14)
EXAMPLE	$P2_{1}/c$	$C_{^{2h}}^{^{5}}$		2/m	1
	No. 14	$P12_{1}/c1$		Patter	rson sy:
	UNIQUE AXIS b	, CELL CHOICE 1			
	Generators selected	(1); $t(1,0,0)$; $t(0,1,0)$;	t(0,0,1); (2	2); (3)	
	Positions Multiplicity, Wyckoff letter, Site symmetry	Coordinate	es		
Matrix-column presentation	4 e 1 (1) x	(2) $\bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$	$\frac{1}{2}$ (3) \bar{x}	$, \bar{y}, \bar{z}$ (4) $x, \bar{y} +$	$-\frac{1}{2}, z+\frac{1}{2}$
Geometric	Symmetry operation		1 0,0,0	(1) a m 1	
interpretation	(1) 1 (2) 2($(0, \frac{1}{2}, 0) 0, y, \frac{1}{4}$ (3)	1 0,0,0	(4) $c x, \frac{1}{4}, z$	
Seitz symbols	(1) {1 0} (2) {	2 ₀₁₀ 101/21/2 } (3	3) {110}	(4) {m ₀₁₀ I0	1/21/2}

Bilbao Crystallographic Server

Problem: Geometric Interpretation of (W,w) OPERATION

SYMMETRY

Symmetry Operation	Introduce the crystal system				monoclinic 🛟
This program calculates the geometric interpretation of matrix column representation of symmetry operation for a given crystal system or space group. Input:	Or enter the sequential number Crystallography, Vol. A	of group as given in	the Intern	ational Tables for	choose it
 i) The crystal system or the space group number. ii) The matrix column representation of symmetry operation. If you want to work on a non-conventional setting click on 	Matrix column representation of operation	symmetry	- x,y +1/2,	-z+1/2	
Non conventional setting, this will show you a form where you have to introduce the transformation matrix relating the conventional setting of the group you have chosen with the non conventional one you are interested in.	In matrix form	1	Rotationa 0	al part 0	Translation 0
Output:		0	0	1	0
We obtain the geometric interpretation of the symmetry operation.	Standard/Default Settin	g	(Non C	Conventional Setting	0 a a
-x,y+1/2,-z+1/2	$ \begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 1/2 \\ 0 & -1 & 1/2 \end{array} $	2 (0,1/2,0) 0,y	,1/4		

EXERCISES

Construct the matrix-column pairs (W,w) of the following coordinate triplets:

- (1) x,y,z (2) -x,y+1/2,-z+1/2
- (3) -x,-y,-z (4) x,-y+1/2, z+1/2

Characterize geometrically these matrix-column pairs taking into account that they refer to a monoclinic basis with unique axis b (type of operation, glide/screw component, location of the symmetry operation).

Use the program SYMMETRY OPERATIONS for the geometric interpretation of the matrix-column pairs of the symmetry operations.

EXERCISES

Problem 2.3

- I. Characterize geometrically the matrix-column pairs listed under *General position* of the space group *P4mm* in ITA.
- 2. Consider the diagram of the symmetry elements of *P4mm*. Try to determine the matrix-column pairs of the symmetry operations whose symmetry elements are indicated on the unit-cell diagram.
- 3. Compare your results with the results of the program SYMMETRY OPERATIONS

GENERAL AND SPECIAL WYCKOFF POSITIONS SITE-SYMMETRY

Group Actions

Group Actions A group action of a group \mathcal{G} on a set $\Omega = \{\omega \mid \omega \in \Omega\}$ assigns to each pair (g, ω) an object $\omega' = g(\omega)$ of Ω such that the following hold:

(i) applying two group elements g and g' consecutively has the same effect as applying the product g'g, *i.e.* g'(g(ω)) = (g'g)(ω)
(ii) applying the identity element e of G has no effect on ω, *i.e.* e(ω) = ω for all ω in Ω.

Orbit and Stabilizer

The set $\omega^{\mathcal{G}} := \{g(\omega) \mid g \in \mathcal{G}\}\)$ of all objects in the orbit of ω is called the *orbit of* ω *under* \mathcal{G} . The set $S_{\mathcal{G}}(\omega) := \{g \in \mathcal{G} \mid g(\omega) = \omega\}\)$ of group elements that do not move the object ω is a subgroup of \mathcal{G} called the *stabilizer* of ω in \mathcal{G} .

General and special Wyckoff positions

Orbit of a point X_o under G: G(X_o)={(W,w) X_o,(W,w)∈G} Multiplicity

Site-symmetry group S_o={(W,w)} of a point X_o

 $(W,w)X_{o} = X_{o}$

General position X_o

$$S=\{(1, \mathbf{o})\} \simeq 1$$

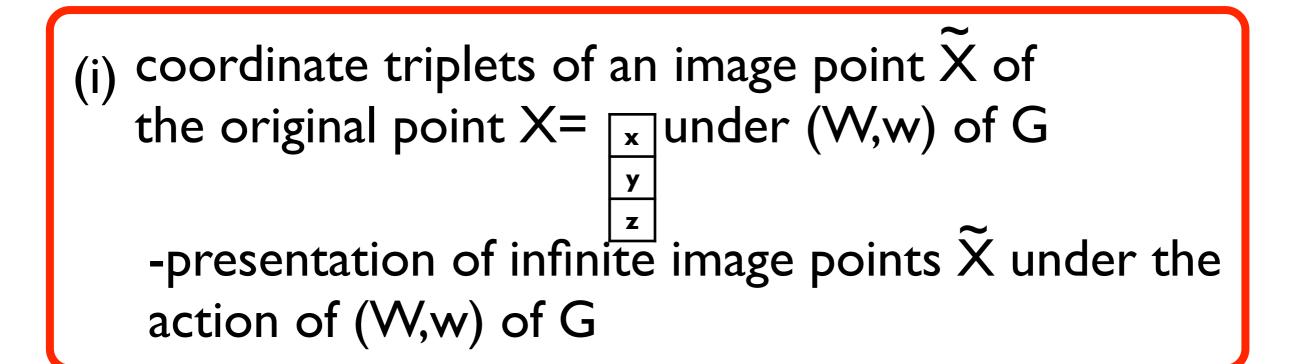
Multiplicity: |P|

Special position X_o

 $S>1 = \{(I, o), ..., \}$ Multiplicity: $|P|/|S_o|$

Site-symmetry groups: oriented symbols

General position



(ii) short-hand notation of the matrix-column pairs(W,w) of the symmetry operations of G

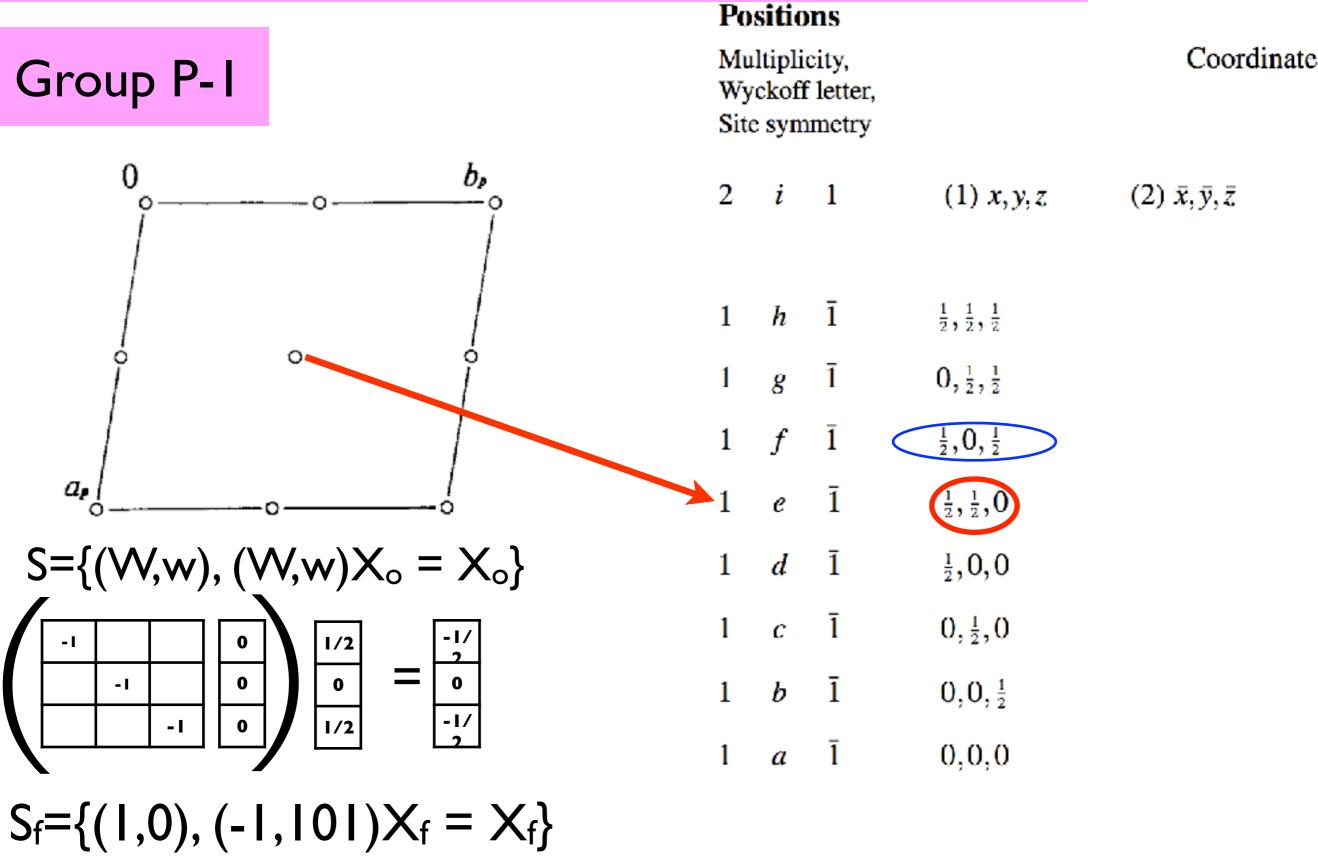
-presentation of infinite symmetry operations of G $(W,w) = (I,t_n)(W,w_0), 0 \le w_{i0} < I$

As coordinate triplets of an image point \tilde{X} of the original point X= $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ under (W,w) of G

General position

(I,0)X	$(W_2, w_2)X \dots (W_m, w_m)X$	X (W _i ,w _i)X
(l,t _l)X	$(W_2, w_2 + t_1) X \dots (W_m, w_m + t_n)$	$t_I)X \dots (W_i, w_i+t_I)X$
$(I,t_2)X$	$(W_2, w_2+t_2)X \dots (W_m, w_m+t_2)X$	
•••	••• •••	•••
$(I,t_j)X$	$(W_2, w_2 + t_j) X \dots (W_m, w_m + t_j) X$	$(W_i, w_i+t_j)X \dots (W_i, w_i+t_j)X$

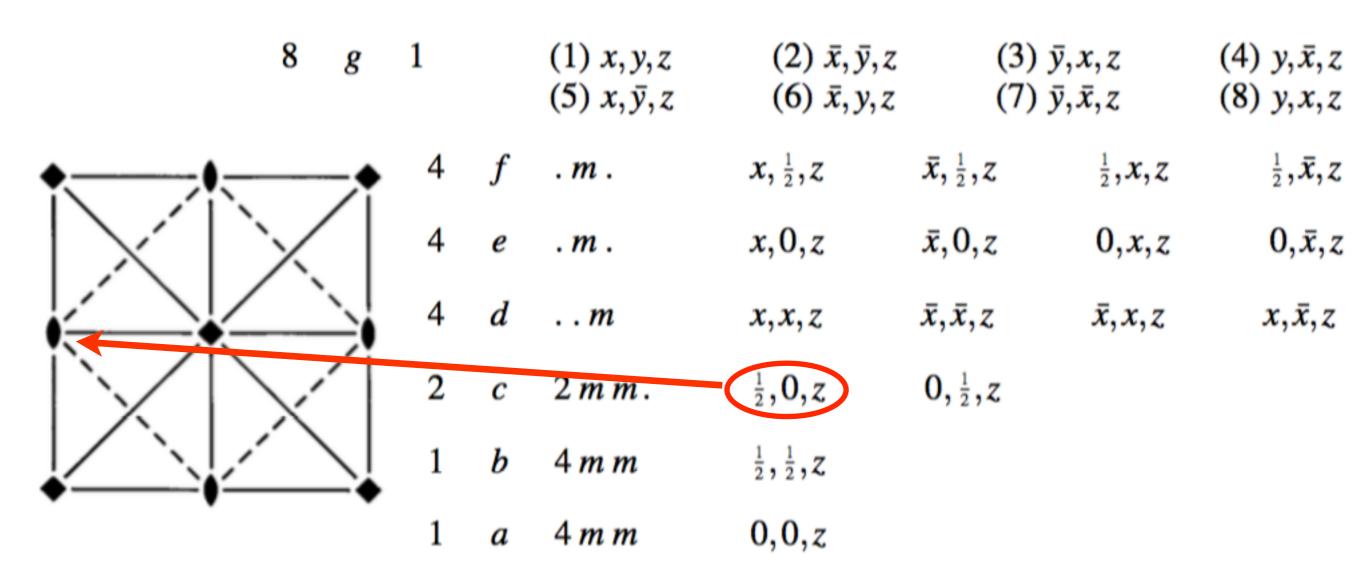
Example: Calculation of the Site-symmetry groups



 $S_f \approx \{I, -I\}$ isomorphic

EXERCISES

General and special Wyckoff positions of P4mm



Symmetry operations

(1) 1(2) 2 0,0,z(3) 4+ 0,0,z(4) 4- 0,0,z(5) m x,0,z(6) m 0,y,z(7) $m x,\bar{x},z$ (8) m x,x,z

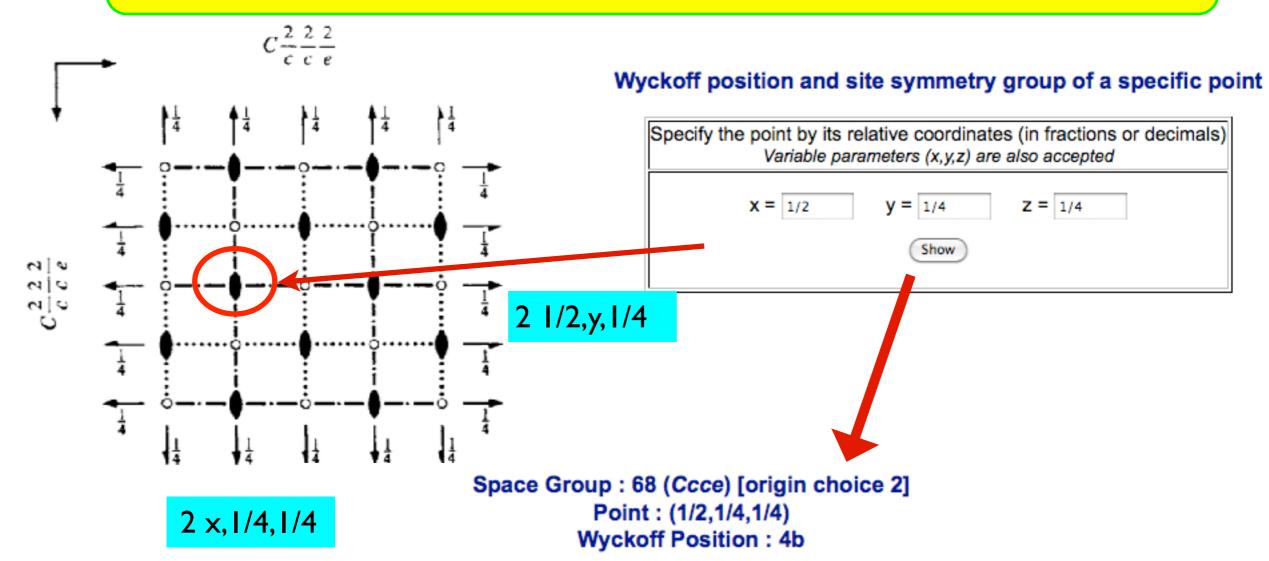
Bilbao Crystallographic Server

Wyckoff positions **Problem:** Site-symmetry groups WYCKPOS Coordinate transformations Wyckoff Positions space group How to select the group Please, enter the sequential number of group as given in International Tables for Crystallography, Vol. A or choose it: The space groups are specified by their number as given in the International Tables for Crystallography, Vol. A. You can give this number, if you know it, or you can choose it from the table with Standard/Default Setting Non Conventional Setting TA Settings the space group numbers and symbols if you click on the link. choose it. If you are using this program in the preparation of a paper, please cite it in the following form: Aroyo, et. al. Zeitschrift fuer Kristallographie (2006), 221, 1, 15-27. Standard basis ITA-Settings for the Space Group 68 ces must be read by columns. P is the transformation f settings $(a, b, c)_n = (a, b, c)_s P$ P⁻¹ ITA number P Setting Transformation Ccce[origin 1] a,b,c a,b,c 68 68 A e a a [origin 1] c,a,b b,c,a of the basis Bbeb[origin 1] b,c,a c,a,b 68 68 Ccce[origin 2] a,b,c a,b,c A e a a [origin 2] c,a,b b,c,a 68

68 B b e b [origin 2] b,c,a c,a,b

Ccce			$D_{^{22}}^{^{22}}$			mm	т	Orthorhombic	
	N	lo. 68		C 2	/c 2/c 2/	e			Patterson symmetry Cmmm
1	6	i 1	(1) x, y, z (2) $\bar{x} + \frac{1}{2}, \bar{y}, z$ (5) $\bar{x}, \bar{y}, \bar{z}$ (6) $x + \frac{1}{2}, y, \bar{z}$			(3) $\bar{x}, y, \bar{z} + \frac{1}{2}$ (4) (7) $x, \bar{y}, z + \frac{1}{2}$ (8)			Patterson symmetry <i>Cmmm</i> $\frac{1}{2}, \bar{y}, \bar{z} + \frac{1}{2}$ $\frac{1}{2}, y, z + \frac{1}{2}$ $\frac{1}{2}, y, z + \frac{1}{2}$
8	h	2	$\frac{1}{4}, 0, z$	$rac{3}{4},0,ar{z}+rac{1}{2}$	$\frac{3}{4}, 0, \overline{z}$	$rac{1}{4},0,z+rac{1}{2}$			L CR
8	g	2	$0, \frac{1}{4}, z$	$0,rac{1}{4},ar{z}+rac{1}{2}$	$0, \frac{3}{4}, \overline{z}$	$0, rac{3}{4}, z+rac{1}{2}$			Space-group symmetry Edited by Moist.Aroyo WILEY Sixth edition
8	f	. 2 .	$0, y, \frac{1}{2}$	$\frac{1}{2}, \bar{y}, \frac{1}{4}$	$0, \bar{y}, \frac{3}{4}$	Wyckof	f Posi	tions of	Group 68 (Ccce) [origin choice 2]
8	е	2	$x, \frac{1}{4}, \frac{1}{4}$	$ar{x}+rac{1}{2},rac{3}{4},rac{1}{4}$	$ar{x},rac{3}{4},rac{3}{4}$	Multiplicity	Wyckoff	Site	Coordinates
8	d	Ī	0,0,0	$\frac{1}{2}, 0, 0$	$0, 0, \frac{1}{2}$	Multiplicity	letter	symmetry	(0,0,0) + (1/2,1/2,0) +
8	с	ī	$\tfrac{1}{4}, \tfrac{3}{4}, 0$	$\frac{1}{4}, \frac{1}{4}, 0$	$\frac{3}{4}, \frac{3}{4}, \frac{1}{2}$	16	i	1	(x,y,z) (-x+1/2,-y,z) (-x,y,-z+1/2) (x+1/2,-y,-z+1/2) (-x,-y,-z) (x+1/2,y,-z) (x,-y,z+1/2) (-x+1/2,y,z+1/2)
4	b	222	$0, \frac{1}{4}, \frac{3}{4}$	$0,rac{3}{4},rac{1}{4}$		8	h	2	(1/4,0,z) (3/4,0,-z+1/2) (3/4,0,-z) (1/4,0,z+1/2)
4	а	222	$0, \frac{1}{4}, \frac{1}{4}$	$0, \frac{3}{4}, \frac{3}{4}$		8	g	2	(0,1/4,z) (0,1/4,-z+1/2) (0,3/4,-z) (0,3/4,z+1/2)
			, = , =			8	f	.2.	(0,y,1/4) (1/2,-y,1/4) (0,-y,3/4) (1/2,y,3/4)
		SI	bace Group : (-	8	е	2	(x,1/4,1/4) (-x+1/2,3/4,1/4) (-x,3/4,3/4) (x+1/2,1/4,3/4)
				int:(0,1/4,1/4 coff Position:	•	8	d	-1	(0,0,0) (1/2,0,0) (0,0,1/2) (1/2,0,1/2)
			Site Sy	mmetry Group	p 222	8	с	-1	(1/4,3/4,0) (1/4,1/4,0) (3/4,3/4,1/2) (3/4,1/4,1/2)
		x,y,z		1 0 0 0 0 1 0 0 0 0 1 0		4	b	222	(0,1/4,3/4) (0,3/4,1/4)
		x, y, z	(/	4	а	222	(0,1/4,1/4) (0,3/4,3/4)
-x,y,-z+1/2 $\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1/2 \end{pmatrix}$			2)	2 0,y,1/4					
-x,-y+1/2,z			(-	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				Bilba	ao Crystallographic
x,-y+1/2,-z+1/2		(1 0 0 0 0 -1 0 1/2 0 0 -1 1/2	2	2 x,1/4,1/4			Server	

Example WYCKPOS: Wyckoff Positions Ccce (68)



Site Symmetry Group 222

x,y,z	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	1
-x+1,y,-z+1/2	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	2 1/2,y,1/4
-x+1,-y+1/2,z	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & 1 & 0 \end{array}\right)$	2 1/2,1/4,z
x,-y+1/2,-z+1/2	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	2 x,1/4,1/4

Consider the special Wyckoff positions of the the space group *P4mm*.

Determine the site-symmetry groups of Wyckoff positions *I a* and *I b*. Compare the results with the listed ITA data

The coordinate triplets (x, 1/2, z) and (1/2, x, z), belong to Wyckoff position 4f. Compare their site-symmetry groups.

Compare your results with the results of the program WYCKPOS.

DOUBLE SPACE GROUPS

Double space groups

Space group G = {(R,v)}: coset decomposition with respect to T G=(E,0)T+(R₂,v₂)T + ... +(R_n,v_n)T

The **double group** ^dG of G is defined by:

 ${}^{\mathrm{d}}\mathsf{G}=(\mathsf{E},\mathsf{0})\mathsf{T}+(\overline{\mathsf{E}},\mathsf{0})\mathsf{T}+(\mathsf{R}_{2},\mathsf{v}_{2})\mathsf{T}+(\overline{\mathsf{R}}_{2},\mathsf{v}_{2})\mathsf{T}+\ldots+(\mathsf{R}_{n},\mathsf{v}_{n})\mathsf{T}+(\overline{\mathsf{R}}_{n},\mathsf{v}_{n})\mathsf{T}$

 R_i and \overline{R}_i are the elements of the double point group ${}^d\overline{G}$ corresponding to the element R_i of the point group of G, and T is the translation subgroup of G.

Note: $G \not\leq ^d G$ the operations of $^d G$ do not form a closed set

double translation subgroup dT: dT=(E,0)T+(E,0)T

$${}^{d}T \leq {}^{d}G = (E,0){}^{d}T + (R_2,v_2){}^{d}T + \dots + (R_n,v_n){}^{d}T$$

T and dT: abelian groups $dT=T\otimes\{(E,0),(\overline{E},0)\}$

Double space groups

Action on a vector/point: $\overline{R}\mathbf{x} = R\mathbf{x}$ $\overline{(R,v)}X = (R,v)X$

Wyckoff positions and site-symmetry groups:

Multiplication rules:

space group G

 $(R_1,v_1)(R_2,v_2)=(R_1R_2,R_1v_2+v_1)$

double space group ^dG

 $(R_{1},v_{1})(R_{2},v_{2})=(R_{1}R_{2},R_{1}v_{2}+v_{1})$ $(\overline{R}_{1},v_{1})(R_{2},v_{2})=(\overline{R}_{1}R_{2},R_{1}v_{2}+v_{1})$ $(R_{1},v_{1})(\overline{R}_{2},v_{2})=(R_{1}\overline{R}_{2},R_{1}v_{2}+v_{1})$ $(\overline{R}_{1},v_{1})(\overline{R}_{2},v_{2})=(\overline{R}_{1}\overline{R}_{2},R_{1}v_{2}+v_{1})$

DOUBLE CRYSTALLOGRAPHIC GROUPS

bilbao crystallographic server

	Contac	ct us About us	Publications	How to cite the server		
N			Space-group symmetry			
A bilbao						
crystaf	Aa fie	Magnetic Symmetry and Applications				
server						
ECM31-Oviedo Satellite		Double poi	nt and space groups			
Editor-Oriedo Odtellite	DGENPOS	General positions of D	ouble Space groups			

allography online: workshop or d applications of the structural he Bilbao Crystallographic Serv

20-21 August 2018

lew Article in Nature

7/2017: Bradlyn et al. "Topological quantum hemistry" Nature (2017). 547, 298-305.

lew program: BANDREP

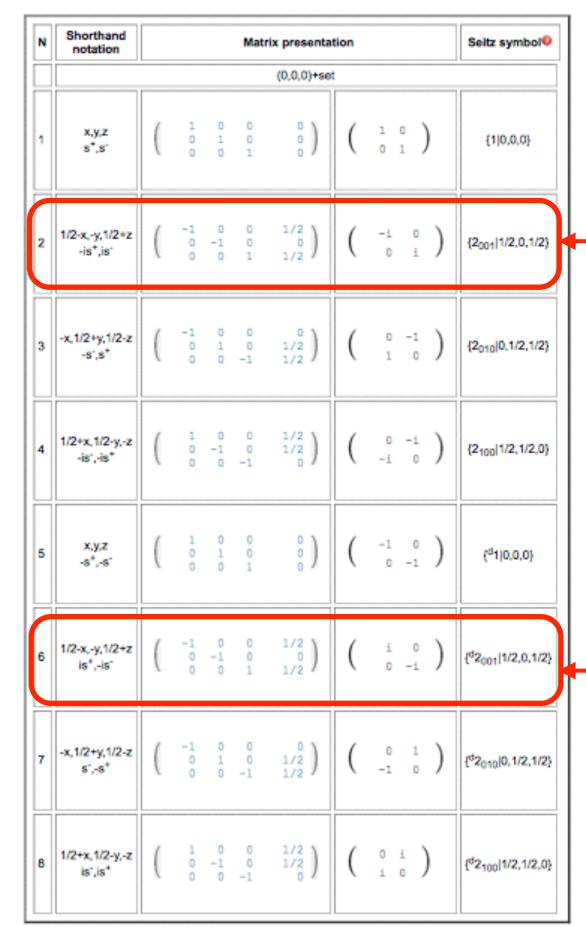
4/2017: Band representations and Elementary and representations of Double Space Groups.

DGENPOSGeneral positions of Double Space groupsREPRESENTATIONS DPGIrreducible representations of the Double Point GroupsREPRESENTATIONS DSGIrreducible representations of the Double Space GroupsDSITESYMSite-symmetry induced representations of Double Space GroupsDCOMPRELCompatibility relations between the irreducible representations of Double SpaceBANDREPBand representations and Elementary Band representations of Double Space Groups

Subperiodic Groups: Layer, Rod and Frieze Groups

Structure Databases

[Get the symmetry operations in plain text format]



Example DGENPOS

Double space group P2₁2₁2₁(19)

The symmetry operations are specified by:

matrix representations

shorthand notation

x,y,z coordinate triplets s₁,s₂ spin components

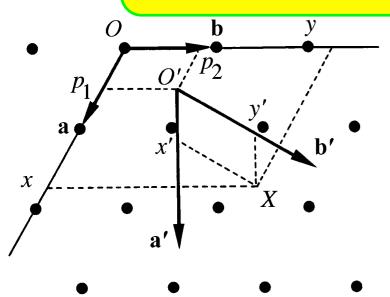
Seitz symbols

Symbols of 'double-group' operations

 $\overline{E} = d1$ $\overline{R} = d1R = dR$

CO-ORDINATE TRANSFORMATIONS IN CRYSTALLOGRAPHY

Co-ordinate transformations in crystallography



3-dimensional space (a, b, c), origin O: point X(x, y, z)(P,p)(a', b', c'), origin O': point X(x', y', z')

Transformation matrix-column pair (P,p)

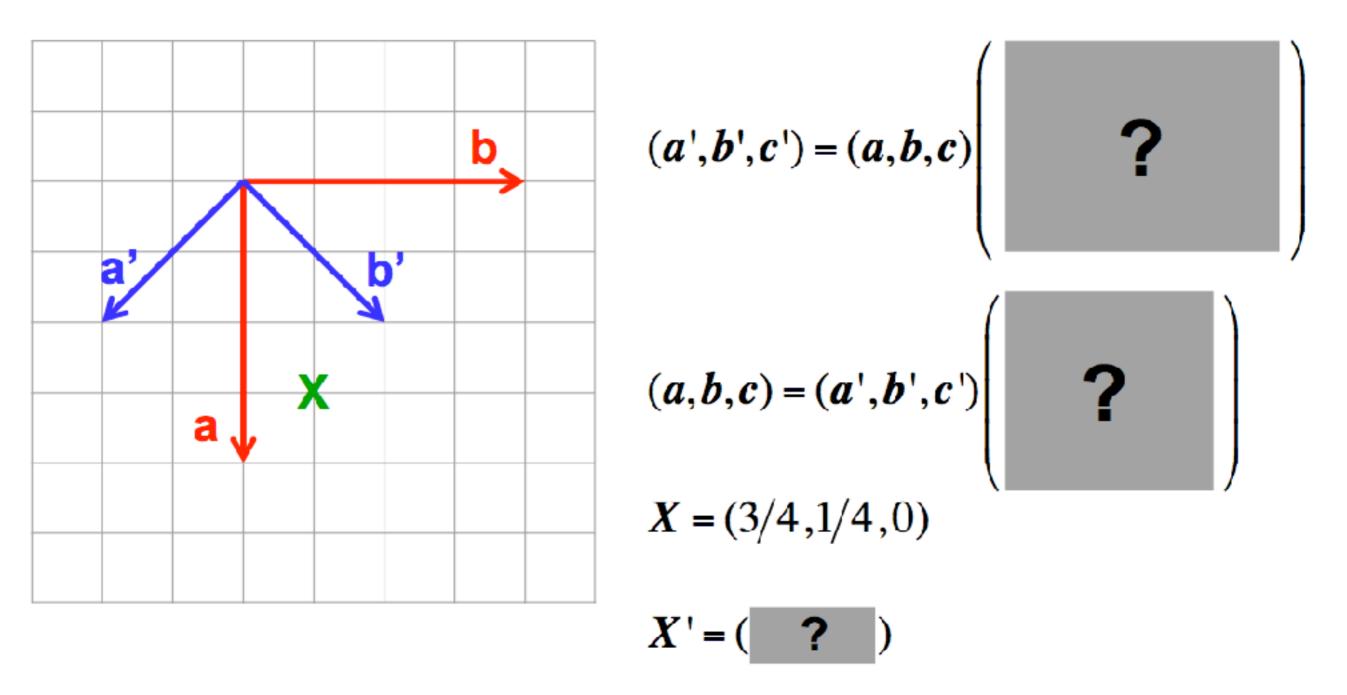
(i) linear part: change of orientation or length:

$$(\mathbf{a}', \mathbf{b}', \mathbf{c}') = (\mathbf{a}, \mathbf{b}, \mathbf{c})P$$

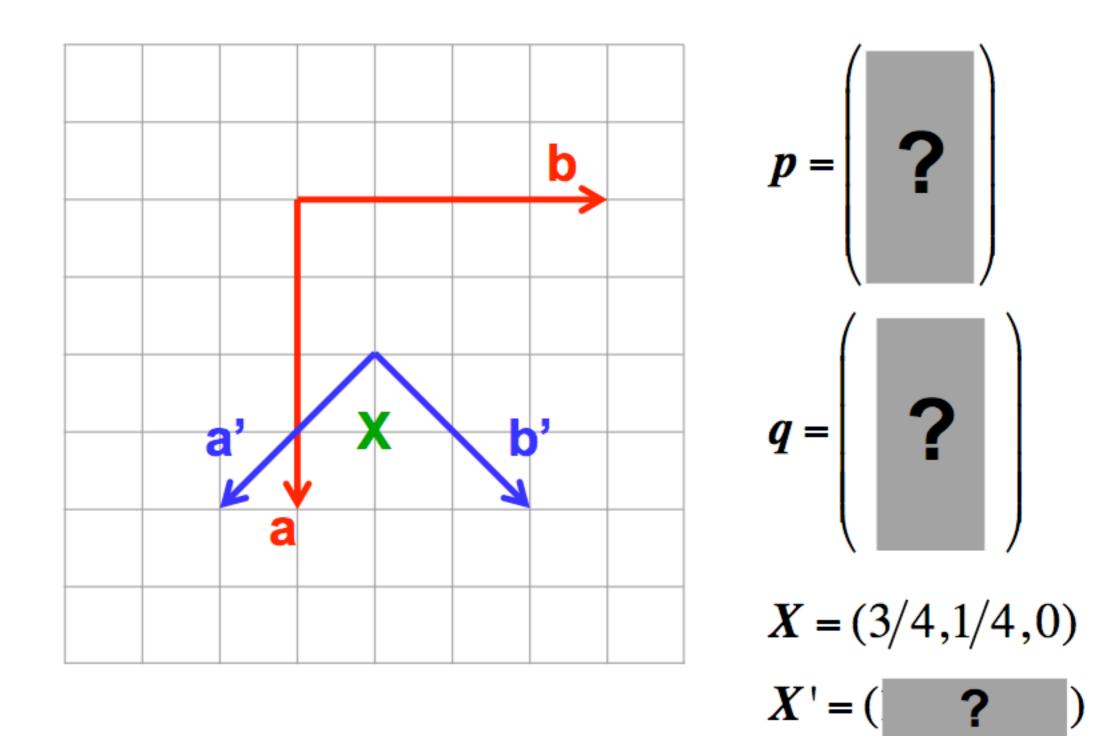
= $(\mathbf{a}, \mathbf{b}, \mathbf{c})\begin{pmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{pmatrix} = (P_{11}\mathbf{a} + P_{21}\mathbf{b} + P_{31}\mathbf{c}, P_{12}\mathbf{a} + P_{22}\mathbf{b} + P_{32}\mathbf{c}, P_{33}\mathbf{c})$

(ii) origin shift by a shift vector $p(p_1, p_2, p_3)$:

<i>O</i> ' = <i>O</i> + <i>p</i>	the origin <i>O</i> ' has coordinates (p1,p2,p3) in the old coordinate system
	the old coordinate system

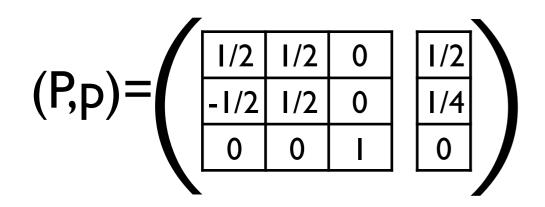


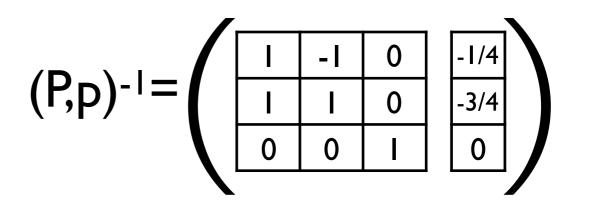
Write "new in terms of old" as column vectors.



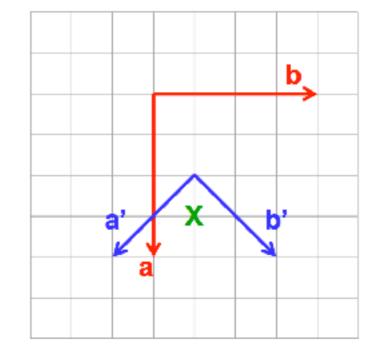
Linear parts as before.

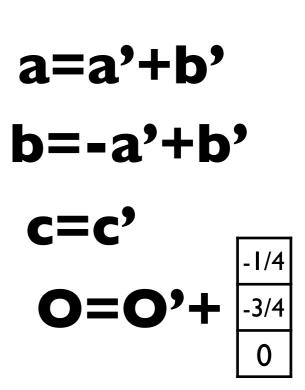
Transformation matrix-column pair (P,p)





a'=1/2a-1/2b b'=1/2a+1/2b c'=c $0'=0+\frac{1/2}{1/4}$



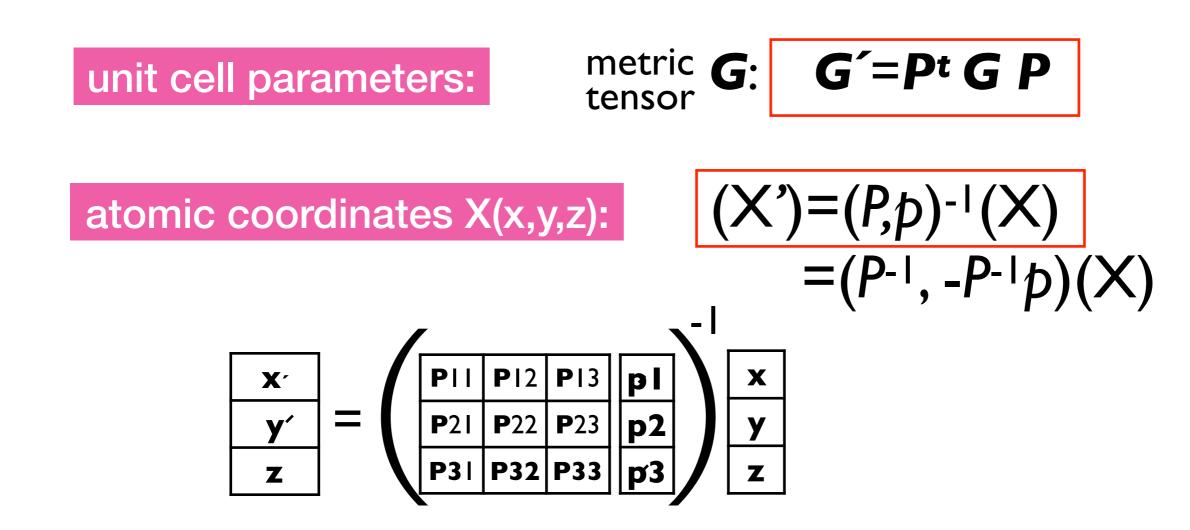


Co-ordinate transformations in crystallography

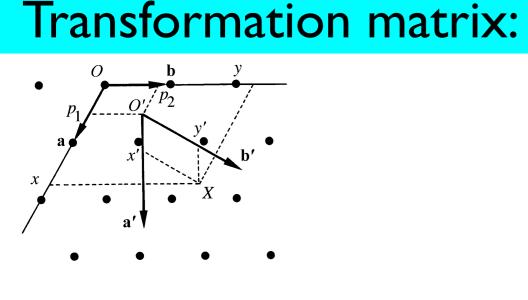
Transformation of space-group operations (W,w) by (P,p):

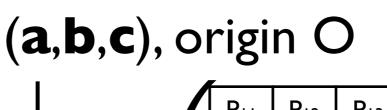
$$(W',w')=(P,p)^{-1}(W,w)(P,p)$$

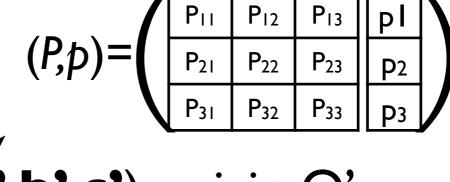
Structure-description transformation by (P,p)



Short-hand notation for the description of transformation matrices







notation rules:

exa

-written by columns
-coefficients 0, +1, -1
-different columns in one line
-origin shift

mple:

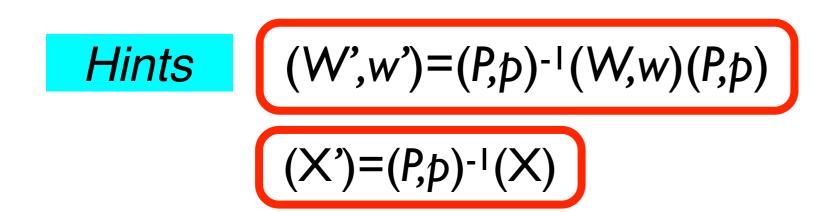
$$| 1 - 1 - 1/4 - 1/4 - 1/4 - 3/4 -$$

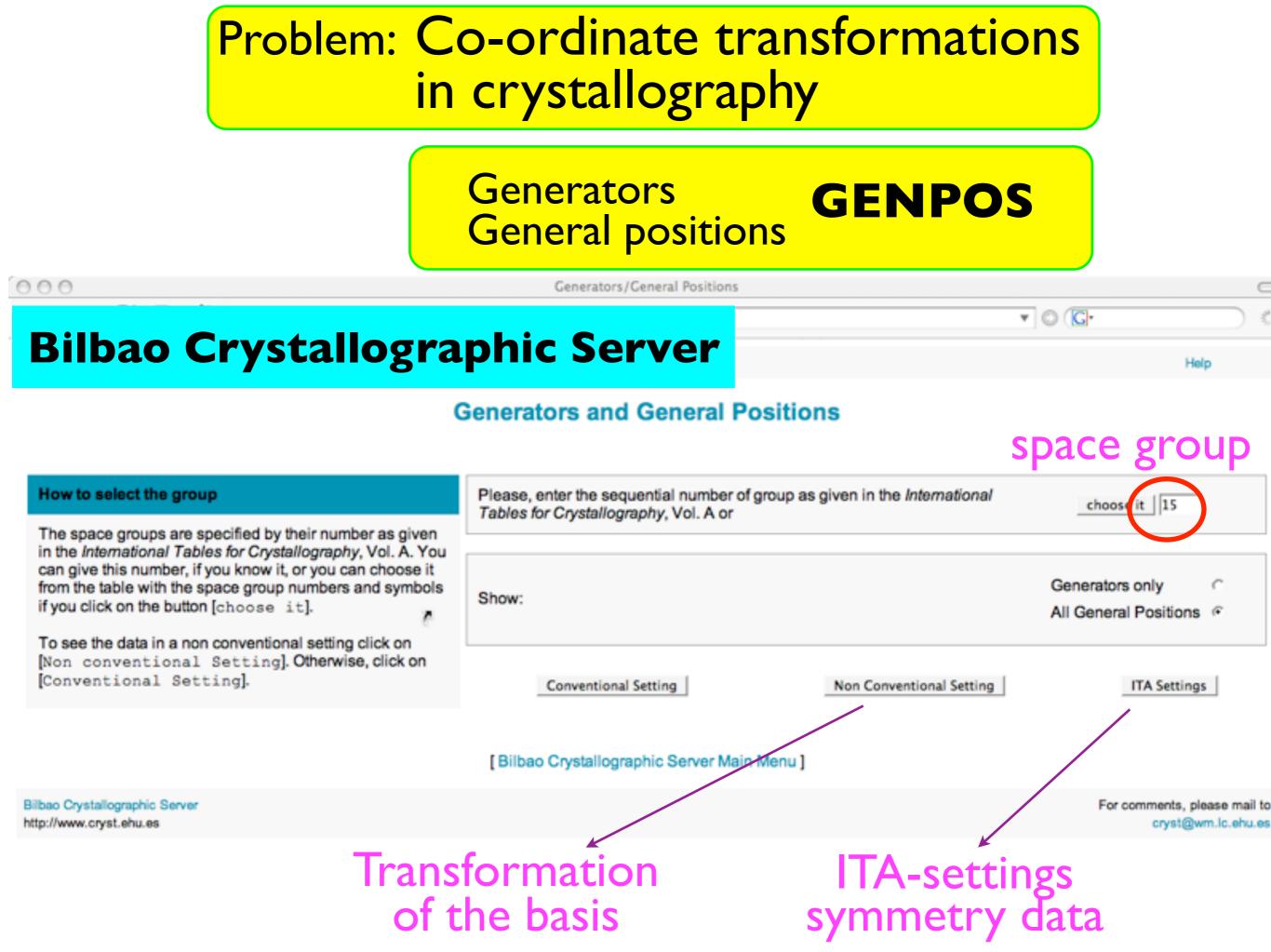
The following matrix-column pairs (W,w) are referred with respect to a basis (**a**,**b**,**c**):

- (1) x,y,z (2) -x,y+1/2,-z+1/2
- (3) -x,-y,-z (4) x,-y+1/2, z+1/2

(i) Determine the corresponding matrix-column pairs (W',w') with respect to the basis (a',b',c')=(a,b,c)P, with P=c,a,b.

(ii) Determine the coordinates X' of a point X= with respect to the new basis (**a'**,**b'**,**c'**).





ITA-Settings for the Space Group 15

Note: The transformation matrices must be read by columns. P is the transformation from standard to the ITA-setting

Example **GENPOS**:

default setting CI2/cI

(W,w)_{A112/a}= (P,p)⁻¹(W,w)_{C12/c1}(P,p)

final setting AII2/a

 $(a, b, c)_n = (a, b, c)_s P$

ITA number	Setting	Р	P ⁻¹
15	C 1 2/c 1	a,b,c	a,b,c
15	A 1 2/n 1	-a-c,b,a	c,b,-a-c
15	<i>l</i> 1 2/a 1	c,b,-a-c	-a-c,b,a
15	A 1 2/a 1	c,-b,a	c,-b,a
15	C 1 2/n 1	a,-b,-a-c	a,-b,a-c
15	/ 1 2/c 1	-a-c,-b,c	-a-c,-b,c
15	A 1 1 2/a	c,a,b	b,c,a
15	B 1 1 2/n	a,-a-c,b	a,c,-a-b
15	l 1 1 2/b	-a-c,c,b	-a-b,c,b
15	B 1 1 2/b	a,c,-b	a,-c,b
15	A 1 1 2/n	-a-c,a,-b	b,-c,-a-b
15	/ 1 1 2/a	c,-a-c,-b	-a-b,-c,a
15	<i>B</i> 2/ <i>b</i> 1 1	b,c,a	c,a,b
15	C 2/n 1 1	b,a,-a-c	b,a,-b-c
15	/ 2/c 1 1	b,-a-c,c	-b-c,a,c
15	C 2/c 1 1	-b,a,c	b,-a,c
15	<i>B</i> 2/ <i>n</i> 1 1	-b,-a-c,a	c,-a,-b-c
15	<i>I 2/b</i> 1 1	-b,c,-a-c	-b-c,-a,b

Example **GENPOS**: ITA settings of C2/c(15)

The general positions of the group 15 (A 1 1 2/a)

N	Standard/Default Setting C2/c			ITA-Setting A 1 1 2/a		
	(x,y,z) form	matrix form	symmetry operation	(x,y,z) form	matrix form	symmetry operation
1	x, y, z	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	1	x, y, z	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	1
2	-x, y, -z+1/2	$\left(\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	2 0,y,1/4	-x+1/2, -y, z	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	2 1/4,0,z
3	-x, -y, -z	$\left(\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right)$	-1 0,0,0	-x, -y, -z	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right)$	-1 0,0,0
4	x, -y, z+1/2	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1/2 \end{array}\right)$	c x,0,z	x+1/2, y, -z	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	a x,y,0
5	x+1/2, y+1/2, z	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & 1 & 0 \end{array}\right)$	t (1/2,1/2,0)	x, y+1/2, z+1/2	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	t (0,1/2,1/2)
6	-x+1/2, y+1/2, -z+1/2	$\left(\begin{array}{rrrr} -1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	2 (0,1/2,0) 1/4,y,1/4	-x+1/2, -y+1/2, z+1/2	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 (0,0,1/2) 1/4,1/4,z
7	-x+1/2, -y+1/2, -z	$\left(\begin{array}{rrrr} -1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 0 \end{array}\right)$	-1 1/4, 1 /4,0	-x, -y+1/2, -z+1/2	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-1 0,1/4,1/4
8	x+1/2, -y+1/2, z+1/2	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	n (1/2,0,1/2) x,1/4,z	x+1/2, y+1/2, -z+1/2	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	n (1/2,1/2,0) x,y,1/4

default setting

AII2/a setting

EXERCISES

Consider the space group $P2_1/c$ (No. 14). Show that the relation between the General and Special position data of $P112_1/a$ (setting unique axis c) can be obtained from the data $P12_1/c1$ (setting unique axis b) applying the transformation $(\mathbf{a}^*, \mathbf{b}^*, \mathbf{c}^*)_{\mathbf{c}} = (\mathbf{a}, \mathbf{b}, \mathbf{c})_{\mathbf{b}}P$, with $P = \mathbf{c}, \mathbf{a}, \mathbf{b}$.

Use the retrieval tools GENPOS (generators and general positions) for accessing the space-group data. Get the data on general positions in different settings either by specifying transformation matrices to new bases, or by selecting one of the 530 settings of the monoclinic and orthorhombic groups listed in *ITA*.

EXERCISES

Problem 2.6

Use the retrieval tools GENPOS or Generators and General positions, for accessing the space-group data on the Bilbao Crystallographic Server or Symmetry Database server. Get the data on general and special positions in different settings either by specifying transformation matrices to new bases, or by selecting one of the 530 settings of the monoclinic and orthorhombic groups listed in ITA.

Consider the General position data of the space group *Im-3m* (No. 229). Using the option *Non-conventional* setting obtain the matrix-column pairs of the symmetry operations with respect to a primitive basis, applying the transformation $(\mathbf{a}', \mathbf{b}', \mathbf{c}') = 1/2(-\mathbf{a}+\mathbf{b}+\mathbf{c}, \mathbf{a}-\mathbf{b}+\mathbf{c}, \mathbf{a}+\mathbf{b}-\mathbf{c})$