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GROUP  THEORY
(few basic facts)



The equilateral triangle allows six symmetry 
operations: rotations by 120  and 240  around its 
centre, reflections through the three thick lines 
intersecting the centre, and the identity operation.

1. Crystallographic symmetry operations

Symmetry operations of an object

The isometries which map the object onto itself are called symmetry operations of this 
object. The symmetry of the object is the set of all its symmetry operations.

If the object is a crystal pattern, representing a real crystal, its symmetry operations are 
called crystallographic symmetry operations.

Crystallographic symmetry operations

The symmetry operations are isometries, i.e. they are special kind of mappings 
between an object and its image that leave all distances and angles invariant.  
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2. Group axioms



Group properties

1. Order of a group ∣G∣: number of elements
crystallographic point groups: 1≤∣G∣≤48

space groups: ∣G∣=∞

2. Abelian group G:
gi.gj = gj.gi ⋁gi, gj ∈ G

3. Cyclic group G:
G={g, g2, g3, ..., gn} finite:  ∣G∣=n, gn=e

order of a group element: gn=e

infinite: G= <g, g-1>



Group Properties

 Multiplication table

 Group generators  
a set of elements such that each element of 
the group can be obtained as a product of the 
generators

4. How to define a group



G
G’
.. ..

Φ(g1)Φ(g2)= Φ(g1 g2)

 Isomorphic groups

-groups with the same multiplication table

Point group 2 = {1,2}

Φ(g)=g’

Φ-1(g’)=g

Point group m = {1,m}



 Homomorphism

G={g} H={h}
φ(g)=h

mapping 

homomorphic 
condition 

isomorphism 



Exercise 1.1

Consider the symmetry group of the equilateral
                                  triangle. Determine:     

-symmetry operations:
 matrix and (x,y)   
 presentation

-multiplication table

-generators



- specify the type and the order of the symmetry 
operation

identity and inversion
reflections
rotations
rotoinversions

1 and 1
m

 2, 3, 4 and 6
3, 4 and 6

point-group 
symmetry operation 

SEITZ SYMBOLS  FOR  SYMMETRY OPERATIONS 

- orientation of the symmetry element by the direction of the 
axis for rotations and rotoinversions, or the direction of the 
normal to reflection planes.

SHORT-HAND NOTATION  OF  SYMMETRY 
OPERATIONS 

R x

y

R11 R12

R21

1

R22

x

y

x’

y’
= =

x’=R11x+R12y
y’=R21x+R22y

-left-hand side: omitted 
-coefficients 0, +1, -1
-different rows in one line, 
separated by commas

notation:

0 -1

-1 1

-y, -x+y
y, x+y{



Problem 1.2

Consider the symmetry group of the square. Determine:     

-symmetry operations:
 matrix and (x,y)   
 presentation

-multiplication table

-generators



 Visualization of Crystallographic Point Groups (3D)

- general position diagram 
 - symmetry elements diagram 

Stereographic Projections

Points P in the 
projection plane

P’’



Rotation axes

Mirror planes

Combinations of symmetry elements

• line of intersection of any two mirror planes must be a rotation axis.  

Symmetry-elements diagrams 



EXAMPLE

general position symmetry elements

Stereographic Projections of 
3m

Point group 3m = 
{1,3+,3-,m10, m01, m11}

Stereographic projections diagrams  

(0,1)
y

x (1,0)

(-1,-1)

(0,1)



Problem 1.2 (cont.)

general position symmetry elements

Stereographic Projections of 
4mm

diagram diagram

? ?



4mm

m01

m10

m10

m01

Conjugate elements

m10  ~  m01
4+

11 01 11

10

1101

10

11



Conjugate elements

Conjugate elements gi ~ gk if ∃ g: g-1gig = gk,
where g, gi, gk, ∈ G 

Classes of conjugate 
elements

L(gi)={gj| g-1gig = gj, g∈G}

Conjugation-properties

(iii) 

(i) L(gi) ∩ L(gj) = {∅}, if gi ∉ L(gj)

(ii) |L(gi)| is a divisor of |G|

(iv) if gi, gj ∈ L, then (gi)k=(gj)k= e

L(e)={e}



Problem 1.2 (cont.)

Distribute the symmetry operations of the group of the 
square 4mm into classes of conjugate elements

Classes of conjugate elements

gi ~ gk if ∃ g: g-1gig = gkHint:



I. Subgroups: index, coset decomposition 
and normal subgroups

II. Conjugate subgroups

III. Group-subgroup graphs 

GROUP-SUBGROUP 
RELATIONS  



Subgroups: Some basic results (summary)

Subgroup H < G

1. H={e,h1,h2,...,hk} ⊂ G
2. H satisfies the group axioms of G

Proper subgroups H < G, and 
trivial subgroup: {e}, G 

Index of the subgroup H in G: [i]=|G|/|H|
                        (order of G)/(order of H)

Maximal subgroup H of G
NO subgroup Z exists such that: 

H < Z < G 



Molecule of pentacene  

x
y

Example Subgroups of point groups

{2, m10}

                            {1,2,m10,m01}

{1, 2} {1, m10}

mm2 = {1,2,m10,m01}

{1, 2} {1,m01}{1,m10}

{1}

Subgroup graph

Subgroups of mm2

4

2

1

1

2

4

Index



Multiplication table of 3m

Problem 1.3 

(i) Consider the group of the equilateral triangle and 
determine its subgroups;

(ii) Construct the maximal subgroup graph of 3m

(0,1)
y

x (1,0)

(-1,-1)

(0,1)



Coset decomposition G:H

Group-subgroup pair H < G

left coset 
decomposition

right coset
 decomposition

G=H+g2H+...+gmH, gi∉H, 
m=index of H in G

G=H+Hg2+...+Hgm, gi∉H
m=index of H in G

Coset decomposition-properties

(i) giH ∩ gjH = {∅}, if gi ∉ gjH

(ii) |giH| = |H|

(iii) giH = gjH, gi ∈ gjH 



Theorem of Lagrange

group G of order |G|
subgroup H<G of order |H| 

then
|H| is a divisor of |G|
and [i]=|G:H|

Corollary The order k  of any 
element of G,
gk=e, is a divisor of |G|

Normal 
subgroups

Hgj= gjH, for all gj=1, ..., [i]

Coset decomposition G:H



Multiplication table of 3m

a

m10

m01

m11

b

Example: Coset decompositions of  3m

Consider the subgroup {1, m10} of 3m of index 3. Write down 
and compare the right and left coset decompositions of 3m 
with respect to {1, m10}.

Demonstrate that H is always a normal subgroup if |G:H|=2.

Problem 1.4



Conjugate subgroups

Conjugate subgroups Let H1<G, H2<G

then, H1 ~ H2, if ∃ g∈G:  g-1H1g = H2

(i) Classes of conjugate subgroups: L(H)

(ii) If H1 ~ H2, then H1 ≅ H2

(iii) |L(H)| is a divisor of  |G|/|H|

Normal subgroup

 H   G, if g-1H g = H, for ∀g∈G



Problem 1.3 (cont.) 

Consider the subgroups of 3m and distribute them into 
classes of conjugate subgroups

Multiplication table of 3m



Complete and contracted 
group-subgroup graphs

Complete graph of 
maximal subgroups 

Contracted graph of 
maximal subgroups 



Group-subgroup relations of point groups
International Tables for Crystallography, Vol. A, Chapter 3.2

Hahn and Klapper



FACTOR GROUP  



Factor group

product of sets:  
Kj={gj1,gj2,...,gjn}
Kk={gk1,gk2,...,gkm}

Kj Kk={ gjpgkq=gr | gjp ∈ Kj, gkq ∈Kk} Each element gr is taken 
only once in the product 
Kj Kk 

G={e, g2, ...,gp} {

factor group G/H:  H   G
G=H+g2H+...+gmH, gi∉H, 
G/H={H, g2H, ..., gmH}

(i) (giH)(gjH) = gijH
(ii) (giH)H =H(giH)= giH

(iii) (giH)-1 = (gi-1)H 

group axioms:  



a

m10

m01

m11

b

Example: Factor group 3m/3

Multiplication table of 3m

(i) coset decomposition
{1,3+,3-}, {m10,m01,m11}

E A

(ii) factor group and 
multiplication table

E A
E E A
A A E



Problem 1.5

Consider the normal subgroup {e,2} of 4mm, of 
index 4, and the coset decomposition 4mm: {e,2}:

(3) Show that the cosets of the decomposition 4mm:{e,2} 
fulfill the group axioms and form a factor group

(4) Multiplication table of the factor group

(5) A crystallographic point group isomorphic to the
        factor group?



GENERAL 
AND SPECIAL 

WYCKOFF POSITIONS  



Group Actions
Group

Actions

Orbit and Stabilizer

Equivalence classes



WXo = Xo

Site-symmetry group So={W} of a point Xo 

 General and special Wyckoff positions

=

General position Xo 

So= 1 ={1} So> 1 ={1,...,}

a b c

d e f

g h i

x0

y0

z0

x0

y0

z0

Site-symmetry groups: oriented symbols 

Multiplicity: |P|/|So|

Multiplicity: |P| Multiplicity: |P|/|So|

Orbit of a point Xo under P: P(Xo)={W Xo,W∈P} 
Multiplicity

Special position Xo 



General and special Wyckoff positions

Point group 2 = {1,2001}

WXo = Xo

Site-symmetry group So={W} of a point Xo=(0,0,z) 

=2001: 0

0

z

-1

-1
1

0

0

z

So = 2

2 b   1 (x,y,z)  (-x,-y,z)

1 a   2  (0,0,z)

Example

Multiplicity: |P|/|So|



Problem 1.6

general position symmetry elements

Molecule of 
pentacene  

Stereographic projections diagrams  
x

y

m10

m01

Point group mm2 = {1,2,m10,m01}

General and special Wyckoff positions

Determine the general and special Wyckoff 
positions of the group mm2



Group-subgroup pair mm2 >2, [i]=2

mm2

x1,y1,z1   2 b 1  

 Wyckoff positions 
splitting schemes

4 d   1     (x,y,z)  
(-x,-y,z)  
(x,-y,z)  
(-x,y,z)

-x1,-y1,z1

x,-y,z=x2,y2,z2   2 b 1  
-x,y,z=-x2,-y2,z2

x,y,z=
-x,-y,z=

2

 Group-subgroup 
relations



CRYSTALLOGRAPHIC 
POINT GROUPS IN 

2D AND 3D
(BRIEF OVERVIEW)



Crystallographic symmetry operations

Crystallographic restriction theorem
The rotational symmetries of a crystal pattern 
are limited to 2-fold, 3-fold, 4-fold, and 6-fold.

Matrix proof:
cosθ -sinθ

sinθ cosθ
Rotation with respect 
to orthonormal basis R=

Rotation with respect 
to lattice basis R: integer matrix In a lattice basis, because the rotation must map 

lattice points to lattice points, each matrix entry — 
and hence the trace — must be an integer. 

Tr R = 2cosθ= integer



Symmetry operations in 3D
Rotations



Symmetry operations in 3D
Rotoinvertions



Symmetry operations in 3D
Rotoinvertions



Symmetry operations in 3D
Rotoinversions



Crystallographic Point Groups in 3D

Proper rotations: det =+1:   1   2     3    4    6

Improper rotations: det =-1:
-
2=m

-
3

-
4

-
6

-
1

chirality preserving

chirality non-preserving



Crystallographic Point Groups in 3D



Hermann-Mauguin symbolism (International Tables A)

-symmetry elements in decreasing order of
 symmetry (except for two cubic groups: 23 and m  ) -

3

-symmetry elements along primary, secondary and
 ternary symmetry directions

rotations: by the axes of rotation
planes: by the normals to the planes

- rotations/planes along the same direction
- full/short Hermann-Mauguin symbols

A direction is called a symmetry direction of a crystal structure if 
it is parallel to an axis of rotation or rotoinversion or if it is parallel 
to the normal of a reflection plane.



Crystal systems and 
Crystallographic point groups

primary secondary ternary



Crystal systems and 
Crystallographic point groups

primary secondary ternary



Rotation Crystallographic Point 
Groups in 3D

Cyclic: 1(C1), 2(C2), 3(C3), 4(C4), 6(C6)

Dihedral: 222(D2), 32(D3), 422(D4), 622(D6) 

Cubic: 23 (T), 432 (O)



Dihedral Point Groups

{e,2z, 2y,2x}

{e,3z,3z ,21,22,23}

{e,4z,4z, 2z,
2y,2x,2+,2-}

{e,6z,6z, 3z,3z, 2z

21,22,23, 21,22,23}

222

32

422

622

´ ´ ´



Cubic Rotational Point Groups

23 (T)

{e, 2x, 2y, 2z, 
31,31,32,32,33,33,34,34}

{e, 2x, 2y, 2z,
4x,4x,4y,4y,4z,4z 

31,31,32,32,33,33,34,34

21,22,23,24,25,26}

432(O)



Direct-product groups
Let G1 and G2 are two groups. The set of all pairs  {(g1,g2), g1∈G1, 
g2∈G2} forms a group G1   G2 with respect to the product: (g1,g2) 
(g’1,g’2)= (g1g’1, g2g’2).

x

The group G= G1   G2 is called a direct-product groupx

Point group mm2 = {1,2001,m100,m010}
G1={1,2001} G2={1,m100}
G1 x G2 = {1.1, 2001.1, 1.m100, 2001m100=m010}

xG1 {1,1}=G1+1.G1

G2={1,1}   group of inversion

Centro-symmetrical groups

G1:  rotational groups 

x {1,1}={1,2001,m100,m010}
{1.1, 2001.1, m100.1,m010.1, 1.1, 2001.1, m100.1,my.1}
{1,2001,m100,m010,1,m001,2100,2010}=2/m2/m2/m or mmm



Crystallographic Point Groups

G           G+1G                       G(G’)       G’+1(G-G’)

1 (C1)    1+1.1=1  (Ci)                ----           -----

2 (C2)    2+1.2=2/m  (C2h)          2(1)          m (Cs)        

3 (C3)    3+1.3=3  (C3i or S6)       ----            ----       

4 (C4)    4+1.4=4/m  (C4h)          4(2)          4 (S4)        

6 (C6)    6+1.6=6/m  (C6h)          6(3)          6 (C3h)        



  4+1.4=4/m  (C4h)                 

4 (C4) 

4(2)          4 (S4)



Crystallographic Point Groups

G          G+1G                             G(G’)     G’+1(G-G’)

222 (D2)    222+1.222=2/m2/m2/m      222(2)    2mm (C2v)               

 4/mmm(D4h)       422(222) 42m (D2d)        

  32 (D3)    32+1.32=32/m 3m(D3d)      32(3)      3m (C3v)               

422 (D4)    422+1.422=4/m2/m2/m      422(4)     4mm (C4v)               

 6/mmm(D6h)       622(32)   62m (D3h)        
622 (D6)    622+1.622=6/m2/m2/m       622(6)     6mm (C6v)                                                

   23 (T)    23+1.23=2/m3   m3 (Th)        ----          -----               

mmm (D2h)

 432 (O)    432+1.432=4/m32/m           432(23)    43m (Td)               
m3m(Oh)



222 (D2)

222(2)    2mm (C2v) 222+1.222=2/m2/m2/m
mmm (D2h)



Crystallographic Point Groups

422       e   4z 4z   2z   2x 2y   2+2-

4mm     e   4z 4z   2z   mx my  m+m-

42m      e   4z 4z   2z   2x 2y   m+m-

4m2      e   4z 4z   2z   mx my   2+2-

Groups isomorphic to 422

Groups isomorphic to 622

622       e   6z6z   3z3z     2z    212223     212223´´ ´

6mm       e   6z6z   3z3z     2z   m1m2m3   m1m2m3´ ´ ´
62m        e   6z6z   3z3z     mz    212223    m1m2m3´ ´ ´
6m2        e   6z6z   3z3z     mz    m1m2m3   212223´ ´ ´



422 (D4)

422(4)     4mm (C4v) 422(222) 42m (D2d)



Problem 1.7 

Consider the following three pairs of stereographic 
projections. Each of them correspond to a crystallographic 
point group isomorphic to 4mm:

(i) Determine those point groups by indicating their symbols, 
symmetry operations and possible sets of generators;
(ii) Construct the corresponding multiplication tables;
(iii) For each of the isomorphic point groups indicate the one-to-
one correspondence with the symmetry operations of 4mm.

4mm



DOUBLE GROUPS



Homomorphism SU(2) —> SO(3)

0

@
cos↵ cos� cos� � sin↵ sin� �sin↵ cos� cos� � cos↵ sin� sin� cos�
cos↵ cos� sin� + sin↵ cos� �sin↵ cos� sin� + cos↵ cos� sin� sin�

�cos↵ sin� sin↵ sin� cos�

1

AR(↵,�, �) =

rotation in R3 specified 
by Euler angles (↵,�, �)

D
1
2 (↵,�, �) =

✓
ei(↵+�)/2 cos(�/2) e�i(↵��)/2 sin(�/2)
�ei(↵��)/2 sin(�/2) e�i(↵+�)/2 cos(�/2)

◆

0

@
1 0 0
0 1 0
0 0 1

1

A

✓
1 0
0 1

◆ ✓
�1 0
0 �1

◆homomorphism

SO(3)

kernel

transformation of a 
two-component spinor

special orthogonal
group SO(3)

special unitary 
(unimodular)
group SU(2)

0  ↵  2⇡
0  �  2⇡
0  �  2⇡

rotation 
(α)

rotation 
(α+2π)

SU(2) rotation 
(α)

﹜



Double Groups Bete (1929)
Opechowski (1940)

Definition (Opechowski, 1940):
The double group dG of a group G of order |G| (which is a subgroup of the 3-dim rotational 
group O(3)), is an abstract  group of order 2|G| having the same group-multiplication table 
as the 2|G| matrices of SU(2) which correspond to the elements of G.

dG =G+EG={R} + {R} G={R} < O(3)
E rotation of 2π ER=R

Combinations of symmetry operations

RE=ER=R R∈Grotation of 2π:

rotation Cn: (Cn)n=E (Cn)2n=E (Cn)-1=(Cn)2n-1=E(Cn)n-1

(C2)-1=(C2)3=EC2=C2n=2:

inversion 1: 1E = E1(1)2 = E

reflection m: (m)2= E (m)4=E (m)-1=(m)3=Em=m



Example

{e, g1, g2, ...; Ē, Ēg1, Ēg2, ...} ⇠= dG 2 SU(2)

{e, g1, g2, ...} = G 2 SO(3)

Note: the operations of dG

that correspond to G do not form a closed set

G = {e, Cn, C
2
n, ..., C

n�1
n }

dG = {e, Cn, C
2
n, ..., C

n�1
n , Cn

n , C
n+1
n , ..., C2n�1

n }
Ē = C2⇡ = Cn

n

corresponds to G does 
not form a closed set

cyclic group 
of order n: 

cyclic group 
of order 2n: 

{e, Cn, C
2
n, ..., C

n�1
n } 6 dG

dGthe subset of      that

G ≮dG



{C̄k
n, C̄k�1

n } i↵ {Ck
n, Ck�1

n )}, n > 2

{C2(n), C̄2(n)} i↵ 9 C2(n
0) or m(n0) with n ? n0

{Cn}, {C̄n} i↵, n 6= 2

{E}, {Ē}, {1̄}, {1̄Ē}

{m(n), m̄(n)} i↵ 9 C2(n
0) or m(n0) with n ? n0

Examples

{e}, {Ē}, {2100, Ē2100}, {2010, Ē2010}, {2001, Ē2001}{e}, {2100}, {2010}, {2001}

d222 = {e, 2100, 2010, 2001, Ē, Ē2100, Ē2010, Ē2001}222 = {e, 2100, 2010, 2001}

2�1
10020012100 = (Ē2100)20012100 = Ē2001

abelian
group

classes of conjugate operations
non-abelian
group

Double GroupsClasses of conjugate elements

OPECHOWSKI RULES

To each class of G           one or two classes of dG 



Problem 1.8

Construct the double group dmm2 and 
distribute its symmetry operations into 
classes of conjugate operations. 

Construct the double group d4mm and 
distribute its symmetry operations into 
classes of conjugate operations. 

What about the classes of conjugate 
symmetry operations of the double groups 
d422 and d4m2?


