

Topology: Magnetic Weyl semimetals

Claudia Felser

- Explorative search for new materials & predictive design (Yan Sun)
- **200** high quality **single crystal growth** (Shekhar Chandra)
- **Epitaxial growth** of thin films (Anastasious Markou)
- **2D materials Nanowires** (Johannes Gooth)

Mn.ir

CaPd_O_ 100 µm

Family of Quantum Hall Effects

Quantum spin Hall

2016

Quantum Hall

S Oh Science 340 (2013) 153

1985

1998

Klaus von Klitzing

Horst Ludwig Störmer and Daniel Tsui 2010

David Thouless, Duncan Haldane und Michael Kosterlitz

Quantum anomalous Hall

Andre Geim and Konstantin Novoselov

Family of Quantum Hall Effects

Hall Effect

Spin Hall Effect

Anomalous Hall Effect

REVIEWS OF MODERN PHYSICS, VOLUME 82, APRIL-JUNE 2010

Anomalous Hall effect

Naoto Nagaosa

Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan and Cross-Correlated Materials Research Group (CMRG), and Correlated Electron Research Group (CERG), ASI, RIKEN, Wako, 351-0198 Saitama, Japan

Jairo Sinova

Department of Physics, Texas A&M University, College Station, Texas 77843-4242, USA and Institute of Physics ASCR, Cukrovarnická 10, 162 53 Praha 6, Czech Republic

Shigeki Onoda

Condensed Matter Theory Laboratory, ASI, RIKEN, Wako, 351-0198 Saitama, Japan

A. H. MacDonald

Department of Physics, University of Texas at Austin, Austin, Texas 78712-1081, USA

N. P. Ong

Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

(Published 13 May 2010)

The anomalous Hall effect (AHE) occurs in solids with broken time-reversal symmetry, typically in a ferromagnetic phase, as a consequence of spin-orbit coupling. Experimental and theoretical studies of the AHE are reviewed, focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical works, both playing a crucial role, has been at the heart of these advances. On the theoretical front, the adoption of the Berry-phase concepts has established a link between the AHE and the topological nature of the Hall currents. On the experimental front, new experimental studies of the AHE in transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors have established systematic trends. These two developments, in concert with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of the Berry-phase curvatures and it is therefore an intrinsic quantum-mechanical property of a perfect crystal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly conductive ferromagnets. The full modern semiclassical treatment of the AHE is reviewed which incorporates an anomalous contribution to wave-packet group velocity due to momentum-space Berry curvatures and correctly combines the roles of intrinsic and extrinsic (skew-scattering and side-jump) scattering-related mechanisms. In addition, more rigorous quantum-mechanical treatments based on the Kubo and Keldysh formalisms are reviewed, taking into account multiband effects, and demonstrate the equivalence of all three linear response theories in the metallic regime. Building on results from recent experiment and theory, a tentative global view of the AHE is proposed which summarizes the roles played by intrinsic and extrinsic contributions in the disorder strength versus temperature plane. Finally outstanding issues and avenues for future investigation are discussed.

Intrinisic Hall

- Berry curvature
- Magnetisation?

Extrinsic Hall

- Skew scattering
- Side jumps

Anomalous Nernst and Hall effects in magnetized platinum and palladium

Weyl semimetals

Weyl Semimetal

- Breaking symmetry
 - Inversion symmetry (Structural distortion)
- Breaking time reversal symmetry
 - Magnetic field

Dirac points are at high symmetry points Weyl points are not at high symmetry points

Type I or II

Graphene

A. K. Geim, A. H. MacDonald Physics Today, 08.(2007), 35-41

3D topological Weyl semimetals - breaking time reversal symmetry – in transport measurement we should see: **b** <u>B</u>

- 1. Fermi arc
- 2. Intrinsic anomalous Hall effect
- 3. Planar Hall effect
- 4. Axial graviational anomaly
- 5. Chiral anomaly

$$\partial_{\mu} j^{\mu}_{\chi} = -\chi \frac{e^3}{4\pi^2 \hbar^2} \boldsymbol{E} \cdot \boldsymbol{B}$$

$$\sigma_a = \frac{e^3 v_f^3}{4\pi^2 \hbar \mu^2 c} \frac{B^2}{B^2},$$

AA Burkov, L Balents, PRL 107 12720 (2012) AA Burkov, arXiv:1704.05467v2 AA Burkov, J. Phys.: Condens. Matter 27 (2015) 113201

- Chiral anomaly is the **anomalous non-conservation** of a chiral current.
- A sealed box with equal number of positive and negative charged particles, its found when it is opened to have more positive than negative particles, or vice-versa.
- Events are expected to be prohibited according to classical conservation laws, must be ways they can be broken, because the observable universe contains more matter than antimatter
 Wikipedia

S. L. Adler, Phys. Rev. 177, 2426 (1969) J. S. Bell and R. Jackiw, Nuovo Cim. A60, 47 (1969) AA Zyuzin, AA Burkov - Physical Review B (2012)

Ga-doping relocate the Fermi energy in NbP close to the W2 Weyl points. Therefore we observe a negative MR as a signature of the chiral anomaly the, NMR survives up to room temperature

Anna Corinna Niemann, Johannes Gooth et al. Scientific Reports 7 (2017) 43394 doi:10.1038/srep4339 preprint arXiv:1610.01413

Experimental signatures for the mixed axial-gravitational anomaly in Weyl semimetals

- In solid state physics, mixed axial-gravitational anomaly can be identified by a positive magneto-thermoelectric conductance (PMTG) for Δ T II B.
- Low fields: quadratic

$$G_T = d_{\rm th} + c_2 a_\chi a_g B_{\parallel}^2$$

- High fields: deminishes
- $\Delta T \parallel B$ dictates sensitivity on alignement of B and ΔT .

Gravitational Anomaly

• Landsteiner, et al. Gravitational anomaly and transport phenomena. Phys. Rev. Lett. 107, 021601 (2011). URL

Jensen, et al. Thermodynamics, gravitational anomalies and cones. Journal of High Energy Physics 2013, 88 (2013).

Lucas, A., Davison, R. A. & Sachdev, S. Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in weyl semimetals. PNAS 113, 9463–9468 (2016).

A positive longitudinal magneto-thermoelectric conductance (PMTC) in the Weyl semimetal NbP for collinear temperature gradients and magnetic fields that vanishes in the ultra quantum limit.

Topology and Magnetism

Magnetism and Topology

Kaustuv Manna et al., Nature Materials Review, in press, arXiv:1802.02838v1

GdPtBi – an ideal Weyl

C. Shekhar et al., PNAS accepted, arXiv:1604.01641, (2016), Kumar PRB 2018, Kaustuv Nat. Mat. Rev. accepted . M. Hirschberger et al., Nature Mat. Online arXiv:1602.07219, (2016).

Magnetism and Topology

Kaustuv Manna et al., Nature Materials Review, in press, arXiv:1802.02838v1

Tuning the symmetry

Ternary Semiconductors

Materials: ... to half metallic ferromagnets

de Groot RA, et al. PRL **50** 2024 (1983) Galanakis *et al.*, PRB **66**, 012406 (2002)

Example: Co₂MnSi

- magic valence electron number: 24
- valence electrons = 24 + magnetic momentsCo₂MnSi: $2 \times 9 + 7 + 4 = 29$ Ms = $5\mu_B$

Tunability Co₂YZ

Weyl semimetals in Heusler compounds

Zhijun Wang, et al., arXiv:1603.00479 Guoqing Chang et al., arXiv:1603.01255 Kübler, Felser, PRB 85 (2012) 012405 Vidal et al Appl.Phys.Lett. 99 (2011) 132509 Kübler, Felser, EPL 114 (2016) 47005.

AHE in half metallic ferromagnets

PHYSICAL REVIEW B 85, 012405 (2012)

Berry curvature and the anomalous Hall effect in Heusler compounds

Jürgen Kübler^{1,*} and Claudia Felser²

FIG. 4. (Color online) Band structure near the Fermi edge of Co_2VSn . Majority-spin electron states appear in red, minority-spin states in black. Note the Dirac cone at the Γ point at about -0.22 eV.

Kübler, Felser, PRB 85 (2012) 012405

$$\rho_{xy}^{M} = (\alpha \rho_{xx} + \beta \rho_{xx}^{2}) M$$

Compound ^a	N_V	<i>a</i> (nm)	M ^{exp}	$M^{ m calc}$	σ_{xy}	P (%)
Co ₂ VGa	26	0.5779	1.92	1.953	66	65
Co ₂ CrAl	27	0.5727	1.7	2.998	438	100
Co ₂ VSn	27	0.5960	1.21	1.778	-1489	35
Co ₂ MnAl	28	0.5749	4.04	4.045	1800	75
Rh ₂ MnAl	28	0.6022		4.066	1500	94
Mn ₂ PtSn ^b	28	0.4509 (1.3477)		6.66	1108	91
Co ₂ MnSn	29	0.5984	5.08	5.00	118	82
Co ₂ MnSi	29	0.5645	4.90	4.98	228	100

No M dependence – Berry curvature

AHE in half metallic ferromagnets

Giant AHE in Co₂MnAl

 $\sigma_{xy} = 1800 \text{ S/cm}$ calc. $\sigma_{xy} \approx 2000 \text{ S/cm}$ meas.

Kübler, Felser, PRB 85 (2012) 012405 Vidal et al. APL. 99 (2011) 132509 Kübler, Felser, EPL 114 (2016) 47005.

Weyl points are the origin for a large Berry phase and a Giant AHE

Co₂MnGa Hall Measurement

• Anomalous Hall conductivity:

 $|\sigma_{\rm xy}|_{\rm max}$ ~ 1590 $\Omega^{\text{-1}}$ cm $^{\text{-1}}$ at 2 K.

- Carrier concentration (2 K): 2.3×10^{21} cm⁻³
- Anomalous Hall Angle upto 12% at RT

Kaustuv Manna et al.,, arXiv:1712.10174

Co₂YZ (Y = IVB or VB; Z = IVA or IIIA)

 $L2_1$ space group 225 (Fm $\overline{3}$ m)

With SOC

Symmetry and electronic structures depend on the magnetization direction

Phys. Rev. Lett. 117, 236401 (2016) Sci. Rep. 6, 38839 (2016)

- nodal line is formed in the plane when bands of opposite mirror eigenvalues cross.
- Mirror planes are related to each other by the rotations

Spingapless semiconductors and Weyl semimetals

S. Ouardi, G. H. Fecher, J. Kübler, and C. Felser, Physical Review Letter 110 (2013) 100401

K. Manna et al.,, arXiv:1712.10174

K. Manna et al., Nature Materials Review, in press, arXiv:1802.02838v1

Berry Curvature

Satya N. Guin, et al., arXiv:1806.06753

Co₂MnGa Anomalous Nernst

Satya N. Guin, arXiv:1806.06753 Jonathan Noky et al., submitted

Magnetism and Topology

Kaustuv Manna et al., Nature Materials Review, in press, arXiv:1802.02838v1

Mn₃Ga Mn₃Ge Mn₃Sn

$$\rho_H = R_0 B + 4\pi R_s M$$

No ! – No Berry phase

Hexagonal Antiferromagnet

A LETTERS JOURNAL EXPLORING THE FRONTIERS OF PHYSICS

EPL, **108** (2014) 67001 doi: 10.1209/0295-5075/108/67001 December 2014

www.epljournal.org

Non-collinear antiferromagnets and the anomalous Hall effect

J. $\mathrm{K\ddot{u}BLER^1}$ and C. $\mathrm{FeLSER^2}$

PRL 112, 017205 (2014) PHY	SICAL REVIEW	LETTERS	10 JANUARY 2014
----------------------------	--------------	---------	-----------------

Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism

Hua Chen, Qian Niu, and A. H. MacDonald

Chen, Niu, and MacDonald, Phys. Rev. Lett., 112 (2014) 017205 Kübler and Felser EPL 108 (2014) 67001

Non-collinear AFM Mn₃Ge/Mn₃Sn

LETTER

doi:10.1038/nature15723

Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature

Satoru Nakatsuji^{1,2}, Naoki Kiyohara¹ & Tomoya Higo¹

Nayak et al. preprint: arXiv:1511.03128, Science Advances 2 (2016) e1501870 Kiyohara, Nakatsuji, preprint: arXiv:1511.04619, Nakatsuji, Kiyohara,

Nakatsuji, Kiyohara, & Higo, Nature, doi:10.1038/nature15723

Fermiarcs in the Weyl AFM

Quantum topological states on Kagome lattice

LETTER

doi:10.1038/nature25987

Fe₃Sn₂

Massive Dirac fermions in a ferromagnetic kagome metal

Looking for Weyl fermions on a ferromagnetic Kagomé lattice with out of plane magnetisation.

Nature, 2018, doi:10.1038/nature25987

Single crystal growth: Co₃Sn₂S₂

- Self-flux by congruent solidification
- Chemical Vapor Transport
- Bridgeman

R -3 m: H Unit cell dimensions a = 5.3689(5) Å c = 13.176(2) Å

High-quality single crystals

Enke Liu, et al. Nature Physics accepted, preprint arXiv:1712.06722

Electron bands without SOC

spin-down channel insulating, gap 0.35 eV, spin-up channel metallic

> Calc.: m = 0.89 uB/fu, Calc.: mCo = 0.30 uB/Co

Linear crossing around Fermi level Possible Weyl nodes with SOC?

Prediction of a Weyl

Enke Liu, et al. Nature Physics accepted, preprint arXiv:1712.06722

Fermiarcs

Qiunan Xu, Enke Liu, Yan Sun, arXiv:1801.00136

Enke Liu, et al. Nature Physics accepted, preprint arXiv:1712.06722

Anomalous Hall conductivity

Enke Liu, et al. Nature Physics accepted, preprint arXiv:1712.06722

Quantum Anomalous Hall effect

LETTER

doi:10.1038/nature25987

Massive Dirac fermions in a ferromagnetic kagome metal

A new progress with Dirac fermions with a tiny band gap on Kagomé lattice, online in Nature two weeks ago.

Nature, 2018, doi:10.1038/nature25987

Co₃Sn₂S₂ goes even further and for the first time shows the gapless (massless) Weyl fermions in the ferromagnetic Kagome lattice.

Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal

Kyoo Kim^{1,2,10}, Junho Seo^{1,3,10}, Eunwoo Lee^{4,5,6}, K.-T. Ko¹,^{1,2}, B. S. Kim^{4,5}, Bo Gyu Jang⁷, Jong Mok Ok^{1,3}, Jinwon Lee^{1,3}, Youn Jung Jo⁸, Woun Kang⁹, Ji Hoon Shim⁷, C. Kim^{4,5}, Han Woong Yeom^{1,3}, Byung II Min¹, Bohm-Jung Yang^{4,5,6*} and Jun Sung Kim^{1,3*}

Magnetism and Topology

Kaustuv Manna et al., Nature Materials Review, in press, arXiv:1802.02838v1

GdPtBi is an ideal Weyl semimetal

In magnetic Weyls we have additional degrees of freedoms – Co2MnGa Co3Sn2S2

Large Berry curvatures lead to large AHE and ANE

and in the 2D limit to a QAH effect – for room temperature applications

Berry curvatures in zero moment compounds: Mn₃Sn Ti₂MnGa

Is there a relation between real space? Skyrmion

New topological physics, hydrodynamics ...

... much more to do!

arXiv:1511.07672v1

Single Crystals available

BaCr2As2	AlPt	MoSe2-xTex	Ag2Se	YPtBi	YbMnBi2
BaCrFeAs2	GdAs	MoTe2-xSex	IrO2	NdPtBi	Ni2Mn1.4In0.6
	CoSi	MoTe2 (T´/2H)	OsO2	GdPtBi	YFe4Ge2
CaPd3O4			ReO2	YbPtBi	
SrPd3O4	MoP	PtTe2	WP2	ScPdBi	Mn1.4PtSn
BaBiO3	WP	PtSe2	MoP2	YPdBi	
		PdTe2		ErPdBi	CuMnSb
Bi2Te2Se	ТаР	PdSe2	VAI3	GdAuPb	CuMnAs
Bi2Te3	NbP	OsTe2	Mn3Ge	TmAuPb	
Bi2Se3	NbAs	RhTe2	Mn3Ir	AuSmPb	Co2Ti0.5V0.5Sr
BiSbTe2S	TaAs	TaTe2	Mn3Rh	AuPrPb	Co2VAI0.5Si0.5
BiTel	NbP-Mo	NbTez	Mn3Pt	AuNdPb	Co2Ti0.5V0.5Si
BiTeBr	NbP-Cr	WSe2) n	V .€ SI	Mn2CoGa
BiTeCl	TaP-Mo	HfTe5		uLusn	Co2MnGa
	TaAsP	MoTe2		AuYSn	Co2Al9
LaBi, LaSb		TaS2		ErAuSn	Co2MnAl
GdBi, GdSb	CrNb3S6	PdSb2		EuAuBi	Co2VGa0.5Si0.5
	V3S4	CuxWTe2			Co2TiSn
HfSiS	Cd3As2	FexWTe2		CaAgAs	Co2VGa
ZrSiS		WTe2			Co2V0.8Mn0.20
	MnP	Co0,4TaS2		KMgSb	CoFeMnSi
Bi4I4	MnAs	Fe0,4TaS2		KMgBi	
				KHgSb	
BaSn2				KHgBi	
				LiZnAs	
				LiZnSb	

.5V0.5Sn 0.5Si0.5 .5V0.5Si Ga Ga A a0.5Si0.5 n 8Mn0.2Ga nSi