# Topology from band representations

Jennifer Cano

Stony Brook University and Flatiron Institute for Computational Quantum Physics

### Part 2: Disconnected EBRs

**Refs:** 

**"Topological quantum chemistry,"** Bradlyn, Elcoro, Cano, Vergniory, Wang, Felser, Aroyo, Bernevig, <u>ArXiv: 1703.02050</u>, Nature 547, 298 — 305 (2017)

**"Building blocks of topological quantum chemistry,"** Cano, Bradlyn, Wang, Elcoro, Vergniory, Felser, Aroyo, Bernevig <u>ArXiv: 1709.01935</u>, PRB 97, 035139 (2018); Sec IV

"Band connectivity for topological quantum chemistry: band structures as a graph theory problem," Bradlyn, Elcoro, Vergniory, Cano, Wang, Felser, Aroyo, Bernevig, <u>ArXiv: 1709.01937</u>, PRB 97, 035138 (2018)

"Graph theory data for topological quantum chemistry," Vergniory, Elcoro, Wang, Cano, Felser, Aroyo, Bernevig, Bradlyn, <u>ArXiv: 1706.08529</u>, PRE 96, 023310 (2017)

#### Definition of topological bands

 A group of bands isolated in energy is topological if it cannot be smoothly deformed to any atomic limit without either closing the gap or breaking symmetry

#### **Connection to band representations**

- Band reps are topologically trivial
- All topologically trivial bands correspond to a band rep

#### "Disconnected" EBRs are topological



If each group of bands was an EBR, then the sum of both would be composite

 $\Rightarrow$  at least one group must be topological

#### Michel and Zak believed elementary bands could not be gapped



"we present the topologically global concepts necessary for the proof"

### Symmetry does not uniquely determine connectivity





#### Motivated to find connectivity of EBRs: Map to graph theory



 $\bar{K}_{4} \downarrow G_{\Lambda} = \bar{\Lambda}_{3}$  $\bar{K}_{5} \downarrow G_{\Lambda} = \bar{\Lambda}_{4}$  $\bar{K}_{6} \downarrow G_{\Lambda} = \bar{\Lambda}_{3} \oplus \bar{\Lambda}_{4}$  $\bar{\Gamma}_{8} \downarrow G_{\Lambda} = \bar{\Lambda}_{3} \oplus \bar{\Lambda}_{4}$  $\bar{\Gamma}_{9} \downarrow G_{\Lambda} = \bar{\Lambda}_{3} \oplus \bar{\Lambda}_{4}$ 

#### **Example:**

 $\bar{\Gamma}_8 \downarrow G_{\Sigma} = \bar{\Sigma}_3 \oplus \bar{\Sigma}_4$  $\bar{\Gamma}_9 \downarrow G_{\Sigma} = \bar{\Sigma}_3 \oplus \bar{\Sigma}_4$  $\bar{M}_5 \downarrow G_{\Sigma} = \bar{\Sigma}_3 \oplus \bar{\Sigma}_4$ 



← Compatibility relations

 $\bar{\Gamma}_9 \ \bar{\Sigma}_3^1 \ \bar{\Sigma}_3^2 \ \bar{\Sigma}_4^1 \ \bar{\Sigma}_4^2 \ \bar{\Lambda}_3^1 \ \bar{\Lambda}_3^2 \ \bar{\Lambda}_4^1 \ \bar{\Lambda}_4^2 \ \bar{K}_4 \ \bar{K}_5 \ \bar{K}_6 \ \bar{T}_3^1 \ \bar{T}_3^2 \ \bar{T}_4^1 \ \bar{T}_4^2 \ \bar{M}_5^1 \ \bar{M}_5^2$  $\Gamma_8$  $\Gamma_8$ () () ()  $\mathbf{0}$  $\bar{\Gamma}_9$  $ar{\Sigma}^1_3 \ ar{\Sigma}^2_3 \ ar{\Sigma}^1_4$  $ar{\Sigma}^4_4 ar{\Lambda}^1_3 ar{\Lambda}^2_3$ 0 1  $ar{\Lambda}^1_4 \ ar{\Lambda}^2_4$  $\bar{K}_4$  $\bar{K}_5$  $\bar{K}_{6}^{1} \bar{T}_{3}^{1} \bar{T}_{3}^{2} \bar{T}_{4}^{1} \bar{T}_{4}^{2} \bar{T}_{4}^{1} \bar{M}_{5}^{2} \bar{M}_{5}^{2}$ () 

L=D-A has 1 null vector



 $\overline{\Gamma}_{8}$  $\overline{K}_5 \bullet \overline{K}_4 \bullet \overline$  $\overline{M}_{5}^{1}$  $\overline{\Gamma}_9$  $\overline{K}_6$  $\overline{M}_{5}^{2}$ 

← Compatibility relations

 $\Gamma_8$ 

 $\bar{\Gamma}_{9}^{0} \\ \bar{\Sigma}_{3}^{1} \\ \bar{\Sigma}_{3}^{2} \\ \bar{\Sigma}_{4}^{1} \\ \bar{\Sigma}_{4}^{2} \\ \bar{\Lambda}_{3}^{1} \\ \bar{\Lambda}_{3}^{2} \\ \bar{\Lambda}_{3}^{2}$ 

 $\bar{\Lambda}_4^1 \\ \bar{\Lambda}_4^2 \\ \bar{K}_4$ 

 $ar{K}_5^5 ar{K}_6^1 ar{T}_3^{12} ar{T}_3^{12} ar{T}_4^{12} ar{T}_4^{12} ar{M}_5^{12} ar{M}$ 

L=D-A has 2 null vectors

#### **Routes to topological bands:**



Disconnected elementary band representation (e.g., graphene)



Multiple EBRs + band inversion (e.g., HgTe)

## Part 3: How to identify (non) - EBRs and applications

#### **Tool: vector of irreps at high-symmetry points**

1. List all maximal high-symmetry points and all possible irreps Ex:  $(\bar{\Gamma}_7, \bar{\Gamma}_8, \bar{\Gamma}_9, \bar{K}_4, \bar{K}_5, \bar{K}_6, \bar{M}_5)$ 

#### 2. List the number of times each irrep appears



For EBRs, these vectors can be obtained from BANDREP

3. For topologically trivial bands, the vector must be a sum of vectors corresponding EBRs

### Case 1: irreps at all high-symmetry points not equal to a sum of EBRs

Cannot be a band rep  $\Rightarrow$  must be topological

**Example: Fu-Kane inversion eigenvalue index** 

PRB 76, 045302 (2007)

 $(-1)^{\nu} = \prod_{i} \delta_{i}$ 

Elementary band-representations with time-reversal symmetry of the Double Space Group P1 (No. 2)

. . .

| 1a( <del>1</del> )                  | 1a( <del>1</del> )                       | 1b(1)                                           | 1b(1)                                           | 1c(1)                                    | 1c(1)                                           |  |  |
|-------------------------------------|------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------|-------------------------------------------------|--|--|
| Ā <sub>g</sub> Ā <sub>g</sub> ↑G(2) | <mark>A</mark> uAu <sup>↑</sup> G(2)     | <mark>A</mark> g <mark>A</mark> g↑G(2)          | <mark>A</mark> u <mark>A</mark> u↑G(2)          | <mark>A</mark> g <mark>A</mark> g↑G(2)   | $\overline{A}_{u}\overline{A}_{u}\uparrow G(2)$ |  |  |
| Indecomposable                      | Indecomposable                           | Indecomposable                                  | Indecomposable                                  | Indecomposable                           | Indecomposab                                    |  |  |
| Γ <sub>3</sub> Γ <sub>3</sub> (2)   | Γ <sub>2</sub> Γ <sub>2</sub> (2)        | Γ <sub>3</sub> Γ <sub>3</sub> (2)               | Γ <sub>2</sub> Γ <sub>2</sub> (2)               | Γ <sub>3</sub> Γ <sub>3</sub> (2)        | Γ <sub>2</sub> Γ <sub>2</sub> (2)               |  |  |
| R <sub>3</sub> R <sub>3</sub> (2)   | R <sub>2</sub> R <sub>2</sub> (2)        | <b>R</b> ₂ <b>R</b> ₂(2)                        | ₹ <sub>3</sub> ₹ <sub>3</sub> (2)               | R <sub>2</sub> R <sub>2</sub> (2)        | R <sub>3</sub> R <sub>3</sub> (2)               |  |  |
| T <sub>3</sub> T <sub>3</sub> (2)   | T <sub>2</sub> T <sub>2</sub> (2)        | T <sub>2</sub> T <sub>2</sub> (2)               | T <sub>3</sub> T <sub>3</sub> (2)               | T <sub>2</sub> T <sub>2</sub> (2)        | T <sub>3</sub> T <sub>3</sub> (2)               |  |  |
| U <sub>3</sub> U <sub>3</sub> (2)   | U <sub>2</sub> U <sub>2</sub> (2)        | U <sub>2</sub> U <sub>2</sub> (2)               | U <sub>3</sub> U <sub>3</sub> (2)               | U <sub>3</sub> U <sub>3</sub> (2)        | U <sub>2</sub> U <sub>2</sub> (2)               |  |  |
| ∇ <sub>3</sub> ∇ <sub>3</sub> (2)   | <b>∇</b> <sub>2</sub> ∇ <sub>2</sub> (2) | <b>∇</b> <sub>3</sub> <b>∇</b> <sub>3</sub> (2) | <b>∇</b> <sub>2</sub> <b>∇</b> <sub>2</sub> (2) | <b>∇</b> <sub>2</sub> ∇ <sub>2</sub> (2) | <b>∇</b> <sub>3</sub> <b>∇</b> <sub>3</sub> (2) |  |  |
| X <sub>3</sub> X <sub>3</sub> (2)   | X <sub>2</sub> X <sub>2</sub> (2)        | X <sub>3</sub> X <sub>3</sub> (2)               | X <sub>2</sub> X <sub>2</sub> (2)               | X <sub>3</sub> X <sub>3</sub> (2)        | X <sub>2</sub> X <sub>2</sub> (2)               |  |  |
| Ÿ <sub>3</sub> Ÿ <sub>3</sub> (2)   | Ÿ <sub>2</sub> Ÿ <sub>2</sub> (2)        | ₹ <mark>3</mark> ₹3(2)                          | Ÿ₂Ÿ₂(2)                                         | Ÿ₂Ÿ₂(2)                                  | Ÿ <sub>3</sub> Ÿ <sub>3</sub> (2)               |  |  |
| Z <sub>3</sub> Z <sub>3</sub> (2)   | Z <sub>2</sub> Z <sub>2</sub> (2)        | Z <sub>2</sub> Z <sub>2</sub> (2)               | Z <sub>3</sub> Z <sub>3</sub> (2)               | Z <sub>3</sub> Z <sub>3</sub> (2)        | Z <sub>2</sub> Z <sub>2</sub> (2)               |  |  |

Exercise: check for all EBRs in  $P\overline{1}, \nu = 0$ 

### Case 2: irreps at all high-symmetry points equal to a sum of EBRs

**Could be trivial or topological** 

Ex: space group P1

What to do???

Topological bands not deformable to EBRs

For each sum of EBRs with matching irreps, check whether smooth deformation is possible

If topological, will differ by another quantized invariant (Berry phase, Wilson loop, ...)



Conclude: symmetry eigenvalues are not the whole story... ... but since most crystals have symmetry, they are useful in many cases

#### **Application: check topo mat**

**Ref: "All the (high-quality) topological materials in the world,"** Vergniory, Elcoro, Felser, Bernevig, Wang, <u>ArXiv: 1807.10271</u>

http://www.cryst.ehu.es/cgi-bin/cryst/programs/topological.pl

#### bilbao crystallographic server

| Contact us | About us         | Publications          | How to cite the server                     |                                                        |
|------------|------------------|-----------------------|--------------------------------------------|--------------------------------------------------------|
|            | Spa              | ce-group symmetry     |                                            |                                                        |
|            | Magnetic S       | yr                    | Solid Stat                                 | te Theory Applications                                 |
|            | Group-Subgro     | NEUTRON               | Neutron Scattering S                       | Selection Rules                                        |
|            | Represen         | ta AMPLIMODES         | Primary and Second<br>Symmetry Mode Ana    | lary Modes for a Group - Subgroup pair<br>alysis       |
|            | Solid Sta        | ATC PSEUDO<br>DOPE    | Pseudosymmetry Se<br>Degree of Pseudosy    | earch in a Structure<br>mmetry Estimation              |
|            | S                |                       | Transition Paths (Gr<br>Symmetry-adapted f | oup not subgroup relations)<br>form of crystal tensors |
|            | Subperiodic Grou | Check Topological Mat | 🕰 Check if a given mat                     | terial is topological or not                           |
|            | Str              | ucture Databases      |                                            | (by checking sums of EBRs)                             |

**Raman and Hyper-Raman scattering** 

#### **Application: check topo mat**

#### Ref: "All the (high-quality) topological materials in the world,"

Vergniory, Elcoro, Felser, Bernevig, Wang, ArXiv: 1807.10271

Bilbao Crystallographic Server → Check Topological Mat.

Help

#### **Check Topological Mat**

#### Result of the analysis of the uploaded structure using sample file: Example Ag1Ge1Li2

- The material is a topological insulator.
- List of topological indices:
  - z2w,1=1
  - z2w,2=1
  - z2w,3=1
  - z4=3
- Clicking on See the irreps you can see the details about the number of bands and the identified irreps at each maximal k-vector.
- The set of bands can be put as linear combination of Elementary Band Representations (EBR) and parts of decomposable EBRs with integer positive coefficients. Click on Linear Combinations to get some possible linear combinations of EBRs and partial EBRs.
- Click on Subgroups to check the topological character of the structure in each of its (translationengleiche) subgroups.

M.G. Vergniory, L. Elcoro, C. Felser, B.A. Bernevig, Z. Wang (2018) arXiv:1807.10271

#### Authors have carried out this procedure for all high-quality materials in the ICSD

#### **Application: Materiae**

Ref: "Catalogue of electronic topological materials," Zhang, et al <u>ArXiv: 1807.08756</u>, (Chen Fang's group).

http://materiae.iphy.ac.cn/

#### Record for SnTe

#### Non-SOC Topological Info

| Topological Class   | High symmetry line semi-metal |
|---------------------|-------------------------------|
| High Symmetry Lines | M-X, X-R                      |

#### SOC Topological Info

| Topological class        | Topological insulator |
|--------------------------|-----------------------|
| Symmetry-based Indicator | 1, 7                  |
| Indicator Group          | Z4, Z8                |

#### Symmetry-based indicators of topology

Ref: "Symmetry-based indicators of band topology in the 230 space groups," Po, Vishwanath, Watanabe, <u>ArXiv: 1703.00911</u>, Nature Comm. 8, 50 (2017)



Solutions to compatibility relations:  $S_{CR} = \{ \mathbf{w} | \mathbf{w} \text{ satisfies compatibility} \}$ 

 $\Rightarrow$  Elements in the set S<sub>CR</sub>/S<sub>BR</sub> necessarily describe topological bands but some topological bands are marked as trivial

#### **Compare EBRs and symmetry indicators**

|                                          | EBRs | Symmetry indicators |
|------------------------------------------|------|---------------------|
| Predictive power                         | Yes  | No                  |
| Provide Z <sub>n</sub> index             | No   | Yes                 |
| Topo. bands can be classified as trivial | No*  | Yes                 |

\*caveat: not always easy to answer this question

### When are topological bands missed by symmetry indicators?



#### **Case 1: not enough symmetry**

Recall example of SG P1: this case is also difficult to detect from EBRs

#### Case 2: negative coefficients c<sub>(p,w)</sub>

This case is detectable from EBRs (now included on BCS in check topo mat)

"Fragile topology"

#### What does this mean for gapped EBRs?



Figure: Po, Watanabe and Vishwanath, ArXiv: 1709.06551

#### Exercises

**Fu-Kane formula.** Recall the Fu-Kane formula: a group of bands is a topological insulator protected by time-reversal symmetry if the product of inversion eigenvalues (one from each Kramers pair) is equal to -1. Using the table of inversion eigenvalues in P-1, prove that all band reps in the space group have a trivial Fu-Kane index. (Note: this makes sense because all band reps are topologically trivial.)

**Symmetry indicator with inversion symmetry.** In P-1, the vector of symmetry eigenvalues for a group of bands is given by:

 $(n_{\Gamma+}, n_{\Gamma-}, n_{R+}, n_{R-}, n_{T+}, n_{T-}, n_{U+}, n_{U-}, n_{V+}, n_{V-}, n_{X+}, n_{X-}, n_{Y+}, n_{Y-}, n_{Z+}, n_{Z-},),$ 

where  $n_{k+}$ ,  $n_{k-}$ , are the number of bands at **k** with inversion eigenvalue + or -. There are no constraints from the compatibility relations, but for a group of n bands, it must be that  $n_{k+} + n_{k-} = n$  for all **k**.

- a) Write the vector for each EBR.
- b) Prove that  $\Sigma_k$  ( $n_{k+}$   $n_{k-}$ ) is a multiple of 8 for an EBR.
- c) Prove that in general,  $\Sigma_k$  ( $n_{k+}$   $n_{k-}$ ) is even, whether or not the bands are an EBR.
- c) Bonus: when the bands obey time-reversal symmetry,  $n_{k+} \rightarrow 2n_{k+}$ ,  $n_{k-} \rightarrow 2n_{k-}$ .

Prove that there is a Z<sub>4</sub> index which is zero for EBRs and non-zero otherwise.

#### Graph theory exercise

Given a graph with labelled (numbered) nodes, the degree matrix, D, has diagonal entries indicating the number of lines coming out of each node. The adjacency matrix, A, has  $A_{ij} = A_{ji} = n$  if there are n lines connecting node i and node j. Each zero eigenvector of the Laplacian matrix, L = D - A, indicates a connected component of the graph by its non-zero entries. See below for an example (from Wikipedia).

a) Find the zero eigenvector of the Laplacian matrix below.

b) Prove that the diagonal entries of L are always non-negative, while the offdiagonal entries are always non-positive.

c) Prove that the sum of the entries in each row/column of L is zero.

d) Prove that the vector (1, 1, ...., 1) is always a zero eigenvector of L, as long as each line connects to one node at either end; lines connecting a node to itself are allowed.

e) Prove that a disconnected component of the graph always contributes a zero eigenvector to L.

| Labeled graph | Degree matrix |   |          |   |   | Adjacency matrix |     |   |   |   |   |    | Laplacian matrix |                                   |    |    |    |    |    |  |
|---------------|---------------|---|----------|---|---|------------------|-----|---|---|---|---|----|------------------|-----------------------------------|----|----|----|----|----|--|
| $\bigcirc$    | (2            | 0 | 0        | 0 | 0 | 0)               | ( 0 | 1 | 0 | 0 | 1 | 0) |                  | $\begin{pmatrix} 2 \end{pmatrix}$ | -1 | 0  | 0  | -1 | 0) |  |
| On a          | 0             | 3 | 0        | 0 | 0 | 0                | 1   | 0 | 1 | 0 | 1 | 0  |                  | -1                                | 3  | -1 | 0  | -1 | 0  |  |
| (4)-O-        | 0             | 0 | <b>2</b> | 0 | 0 | 0                | 0   | 1 | 0 | 1 | 0 | 0  |                  | 0                                 | -1 | 2  | -1 | 0  | 0  |  |
| TL            | 0             | 0 | 0        | 3 | 0 | 0                | 0   | 0 | 1 | 0 | 1 | 1  |                  | 0                                 | 0  | -1 | 3  | -1 | -1 |  |
| (3)-(2)       | 0             | 0 | 0        | 0 | 3 | 0                | 1   | 1 | 0 | 1 | 0 | 0  |                  | -1                                | -1 | 0  | -1 | 3  | 0  |  |
| $\bigcirc$    | 0/            | 0 | 0        | 0 | 0 | 1/               | 0   | 0 | 0 | 1 | 0 | 0/ |                  | 0                                 | 0  | 0  | -1 | 0  | 1/ |  |