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Definition of topological bands

• A group of bands isolated in energy is topological if it 
cannot be smoothly deformed to any atomic limit without 
either closing the gap or breaking symmetry

• Band reps are topologically trivial

• All topologically trivial bands correspond to a band rep

Connection to band representations



“Disconnected” EBRs are topological

Topological   insulatorTopological semi-metal

{EBR
}
}

EBR?

EBR?

If each group of bands was an EBR, then the sum of both would be composite

⇒ at least one group must be topological



Michel and Zak believed elementary bands could not be gapped

“we present the topologically global concepts 
necessary for the proof” 



Symmetry does not uniquely determine 
connectivity

Topological   insulatorTopological semi-metal Topological   insulatorTopological semi-metal



Motivated to find connectivity of EBRs: Map to graph theory
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which the remaining two can be obtained by this relabelling. They are
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This matrices di↵er only in their K�⇤ and K�T blocks. As a consistency check, we verify that the sum of elements in
the row or column labelled by ⇢ is equal to d(⇢) from Table XIV; thus, the degree matrix D satisfies Dij = �ij

P
` Ai`.

We can now construct the Laplacian matrices L
1
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and L
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2

associated to these two graphs. To save
space we will not write these out explicitly. We find that the null space of L
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indicating that the graph described by the matrix A
1

has a single connected component consisting of all the nodes in
the graph. On the other hand, we find that the null space of L
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Input: irreps at high-
symmetry points and lines

Map: 
irreps ⇨ graph nodes

Output: distinct band connectivities

Enumerate allowed graphs

Map: 
graph connectivity ⇨ band connectivity 

For each matrix, null vectors of 
Laplacian give graph connectivity
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A
2

has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
tations �̄
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also results in a valid disconnected energy graph
as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b
sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄2b

6

" G representation of the space group. In particular, let si be a vector of
Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb
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} space. To construct
the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C

2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites q
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where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as
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where the extra phases relative to �
�

come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d
0

(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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Example: 

Topological   insulatorTopological semi-metal

← Compatibility relations

L=D-A has 1 
null vector



Example: 

← Compatibility relations

L=D-A has 2 
null vectors

Topological   insulatorTopological semi-metal



Disconnected elementary 
band representation

(e.g., graphene)

Multiple EBRs + band inversion

(e.g., HgTe)

Routes to topological bands:

s

s
p

p



Part 3: How to identify (non) -
EBRs and applications



Tool: vector of irreps at high-symmetry points

1. List all maximal high-symmetry points and all possible irreps

(�̄7, �̄8, �̄9, K̄4, K̄5, K̄6, M̄5)Ex:

2. List the number of times each irrep appears

Topological   insulatorTopological semi-metal

Ex conduction: 

valence: 
(0, 1, 0, 1, 1, 0, 1)
(0, 0, 1, 0, 0, 1, 1)

For EBRs, these vectors can be obtained from BANDREP

3. For topologically trivial bands, the vector must be a sum of 
vectors corresponding EBRs



Case 1: irreps at all high-symmetry points not 
equal to a sum of EBRs

Cannot be a band rep ⇒ must be topological 

Example: Fu-Kane inversion eigenvalue index 
PRB 76, 045302 (2007)

…

Exercise: check for all EBRs in P¯

1, ⌫ = 0

Exercise: check for all EBRs in P¯

1, ⌫ = 0



Case 2: irreps at all high-symmetry points 
equal to a sum of EBRs

Could be trivial or topological

Ex: space group P1

What to do???

Topological bands not deformable to EBRs

If topological, will differ by another quantized 
invariant (Berry phase, Wilson loop, …)

Conclude: symmetry eigenvalues are not the whole story… 

… but since most crystals have symmetry, they are useful in many cases

For each sum of EBRs with matching irreps, check 
whether smooth deformation is possible



Application: check topo mat
Ref: “All the (high-quality) topological materials in the world,” 

Vergniory, Elcoro, Felser, Bernevig, Wang, ArXiv: 1807.10271

(by checking sums of EBRs)

http://www.cryst.ehu.es/cgi-bin/cryst/programs/topological.pl

https://arxiv.org/abs/1807.10271
http://www.cryst.ehu.es/cgi-bin/cryst/programs/topological.pl


Application: check topo mat
Ref: “All the (high-quality) topological materials in the world,” 

Vergniory, Elcoro, Felser, Bernevig, Wang, ArXiv: 1807.10271

Input: vasp2trace file (character at each 
high-symmetry point)


Output: 

1. whether symmetry irreps are EBR sum

2. topological indices

using sample file: Example_Ag1Ge1Li2

Authors have carried out this procedure for all high-quality materials in the ICSD

https://arxiv.org/abs/1807.10271


Application: Materiae
Ref: “Catalogue of electronic topological materials,” Zhang, et al 

ArXiv: 1807.08756, (Chen Fang’s group).

http://materiae.iphy.ac.cn/

https://arxiv.org/abs/1807.08756
http://materiae.iphy.ac.cn/


Symmetry-based indicators of topology

Ref: “Symmetry-based indicators of band topology in the 230 space groups,” Po, 
Vishwanath, Watanabe, ArXiv: 1703.00911, Nature Comm. 8, 50 (2017)

Recall: each EBR is assigned a vector 
of irreps at high-symmetry points: v(⇢,w) = (nk1,1, nk1,2, nk2,1, .....)

irrep Wyckoff position

Band reps are sums of EBRs:

EBR vectorinteger 
coefficient

SBR =
X

(⇢,w)2EBR

c(⇢,w)v(⇢,w)

Solutions to compatibility relations: SCR = {w|w satisfies compatibility}

⇒ Elements in the set SCR/SBR necessarily describe topological bands
but some topological bands are marked as trivial

https://arxiv.org/abs/1703.00911


Compare EBRs and symmetry indicators

EBRs Symmetry indicators

Predictive power Yes No

Provide Zn index No Yes

Topo. bands can be 
classified as trivial No* Yes

*caveat: not always easy to answer this question



When are topological bands missed by 
symmetry indicators?

SBR =
X

(⇢,w)2EBR

c(⇢,w)v(⇢,w) SCR = {w|w satisfies compatibility}

Case 1: not enough symmetry
Recall example of SG P1: this case is also difficult to detect from EBRs 

Case 2: negative coefficients c(ρ,w)

“Fragile topology”

This case is detectable from EBRs (now included on BCS in check topo mat)



What does this mean for gapped EBRs?

Figure: Po, Watanabe and Vishwanath, ArXiv: 1709.06551



Exercises

Fu-Kane formula. Recall the Fu-Kane formula: a group of bands is a topological 
insulator protected by time-reversal symmetry if the product of inversion eigenvalues 
(one from each Kramers pair) is equal to -1. Using the table of inversion eigenvalues in 
P-1, prove that all band reps in the space group have a trivial Fu-Kane index. (Note: 
this makes sense because all band reps are topologically trivial.)


Symmetry indicator with inversion symmetry. In P-1, the vector of symmetry 
eigenvalues for a group of bands is given by:

(nΓ+, nΓ-, nR+, nR-, nT+, nT-, nU+, nU-, nV+, nV-, nX+, nX-, nY+, nY-, nZ+, nZ-,),

where nk+, nk-, are the number of bands at k with inversion eigenvalue + or -. There are 
no constraints from the compatibility relations, but for a group of n bands, it must be 
that nk+ + nk- = n for all k.

  a) Write the vector for each EBR.

  b) Prove that Σk (nk+ - nk- ) is a multiple of 8 for an EBR.

  c) Prove that in general, Σk (nk+ - nk- ) is even, whether or not the bands are an EBR.

  c) Bonus: when the bands obey time-reversal symmetry, nk+ → 2nk+, nk- → 2nk-. 
Prove that there is a Z4 index which is zero for EBRs and non-zero otherwise.



Graph theory exercise
Given a graph with labelled (numbered) nodes, the degree matrix, D, has diagonal 
entries indicating the number of lines coming out of each node. The adjacency 
matrix, A, has Aij = Aji = n if there are n lines connecting node i and node j. Each zero 
eigenvector of the Laplacian matrix, L = D - A, indicates a connected component of 
the graph by its non-zero entries. See below for an example (from Wikipedia).

  a) Find the zero eigenvector of the Laplacian matrix below.

  b) Prove that the diagonal entries of L are always non-negative, while the off-
diagonal entries are always non-positive.

  c) Prove that the sum of the entries in each row/column of L is zero.

  d) Prove that the vector (1, 1, …., 1) is always a zero eigenvector of L, as long as 
each line connects to one node at either end; lines connecting a node to itself are 
allowed.

  e) Prove that a disconnected component of the graph always contributes a zero 
eigenvector to L.


