Band representations

Jennifer Cano

Stony Brook University and Flatiron Institute for Computational Quantum Physics

Part 1: Building band representations

Ref: "Building blocks of topological quantum chemistry," Cano, Bradlyn, Wang, Elcoro, Vergniory, Felser, Aroyo, Bernevig <u>ArXiv: 1709.01935</u>, PRB 97, 035139 (2018) Sec II and Appendix B

Space groups describe symmetry of 3D crystals

Real space

Brillouin zone

Within one space group, many ways to arrange atoms

All atoms are related by symmetry

Within one arrangement, many choices of orbitals

Each arrangement/orbital determines symmetry representations in Brillouin zone

Real space vs momentum space

₩₁

 M_2

Мз

 M_4

Μ

Input real space symmetry

- 1. space group
- 2. atom positions
- 3. orbitals

Band representation: atomic limit and its symmetry

Zak PRL 1980, PRB 1981, 1982

Brillouin zone symmetry

 $\Gamma_1 \quad \Gamma_4 \quad K_3 \quad M_1 \quad M_4$

How to build a band representation? First, define basis

Consider one lattice site:

Site-symmetry group, G_q, leaves **q** invariant C₃, m_y

Elements of space group $g \notin G_q$ move sites in an orbit "Wyckoff position" C_6

Mathematical tool: coset decomposition

 Given a group G, and a subgroup, H, then G can always be partitioned as:

$$G = \bigcup_{\alpha} g_{\alpha} H = g_1 H + g_2 H + \dots + g_n H$$

coset representatives

Example for finite groups:

 $G = C_{6v}, H = C_{2v} \qquad G = EC_{2v} \cup C_3 C_{2v} \cup C_3^2 C_{2v}$

Example for infinite groups:

 $G = \mathbb{Z}, H = 4\mathbb{Z}$ $G = (4\mathbb{Z} + 0) \cup (4\mathbb{Z} + 1) \cup (4\mathbb{Z} + 2) \cup (4\mathbb{Z} + 3)$

Two trivial cases:

 $H = G \Rightarrow G = EH \qquad \qquad H = E \Rightarrow G = \bigcup_{q \in G} gH$

How to build a band representation? First, define basis

Band rep defined by:

space group, **G** atomic position, **q** orbital, **p** ρ is a representation of the site-symmetry group:

$$G_{\mathbf{q}} = \{g | g\mathbf{q} = \mathbf{q}\} \subset G$$

Coset decomposition:

$$G = \bigcup_{\alpha} g_{\alpha}^{\alpha} (G_{\mathbf{q}} \ltimes \mathbb{Z}^3)$$

$$\overset{\text{finite}}{\searrow} \operatorname{coset representatives}$$

Coset representatives move between sites:

 $\mathbf{q}_{\alpha} \equiv g_{\alpha} \mathbf{q}$

 $q_1 = C_6 q_1$

Site-symmetry group elements rotate between orbitals

Tight-binding basis:

$$\begin{split} |\phi_{\mathbf{R},\alpha,i}\rangle \equiv T_{\mathbf{R}}g_{\alpha}|\phi_{\mathbf{0},1,1}\rangle \\ \swarrow \uparrow \checkmark \end{split}$$
 unit cell atom orbital

How does symmetry act in real space?

By virtue of being in site-symmetry group:

$$\langle \phi_{\mathbf{0},1,j} | g | \phi_{\mathbf{0},1,i} \rangle = \rho(g)_{ji}, \ g \in G_{\mathbf{q}}$$

What about elements not in the site-symmetry group? h={P|v}

$$\begin{split} h |\phi_{\mathbf{R},\alpha i}\rangle &= \{P | \mathbf{v}\} \{E | \mathbf{R}\} g_{\alpha} | \phi_{\mathbf{0},1,i}\rangle \\ &= \{E | P \mathbf{R}\} \{P | \mathbf{v}\} g_{\alpha} | \phi_{\mathbf{0},1,i}\rangle \\ & \text{lattice vec} \text{ element of } \mathbf{G}_{\mathbf{q}} \\ & \text{use coset} \\ \text{decomposition!} \quad h g_{\alpha} = \{E | \mathbf{t}\} g_{\beta} g \\ & \text{coset rep.} \\ &= \{E | P \mathbf{R} + \mathbf{t}\} g_{\beta} | \phi_{\mathbf{0},1,j}\rangle \left[\rho(g)\right]_{ji} \\ &= |\phi_{P \mathbf{R} + \mathbf{t},\beta j}\rangle \left[\rho(g)\right]_{ji} \end{split}$$

Orbital part of U is exactly ρ ; site index from coset decomposition, i.e., $\alpha \rightarrow \beta$

Result: $h |\phi_{\mathbf{R},\alpha i}\rangle = |\phi_{P\mathbf{R}+\mathbf{t},\beta j}\rangle [\rho(g)]_{ji}$

where t, g and β are defined by $hg_{\alpha} = \{E|\mathbf{t}\}g_{\beta}g$ the coset decomposition:

This is the general formula for finding the matrix U from yesterday

Recall definition of U:
$$h | \phi_{\mathbf{R},\alpha i} \rangle = [U_h]_{\beta j,\alpha i} | \phi_{\mathbf{R}',\beta j} \rangle$$

How to find little co-group irreps

$$h|\phi_{\mathbf{R},\alpha i}\rangle = [U_h]_{\beta j,\alpha i} |\phi_{\mathbf{R}',\beta j}\rangle$$

Fourier transform:

$$h|\chi_{\alpha i}^{\mathbf{k}}\rangle = |\chi_{\beta j}^{P\mathbf{k}}\rangle \left[U_h\right]_{\beta j,\alpha i} e^{-i(P\mathbf{k})\cdot\mathbf{v}}$$

If g is in the little co-group at k:

$$h|\chi_{\alpha i}^{\mathbf{k}}\rangle = |\chi_{\beta j}^{\mathbf{k}}\rangle [V(\mathbf{G})^{-1}U_h]_{\beta j,\alpha i} e^{-i(P\mathbf{k})\cdot\mathbf{v}}, P\mathbf{k} = \mathbf{k} + \mathbf{G}$$

Character of h={P,v} is given by trace:

$$\operatorname{Tr}\left[V(\mathbf{G})^{-1}U_{h}\right]e^{-i(P\mathbf{k})\cdot\mathbf{v}}, P\mathbf{k}=\mathbf{k}+\mathbf{G}$$

Each atomic limit defines a band representation

Zak PRL 1980, PRB 1981, 1982

A band representation is a representation of the space group It is induced by a representation of a site-symmetry group

Each symmetry operation represented by N x N matrix

 $\begin{array}{l} \text{Diagonal block} \\ \text{if } g \in G_q \text{, i.e, } gq = q \end{array}$

Off-diagonal block if g interchanges sites

The symmetry irreps of a band representation in the Brillouin zone are completely determined

Zak PRL 1980, PRB 1981, 1982

Fourier transformed rep.

Diagonal blocks are rep. of site-symmetry group, G_q

Diagonal blocks form rep. of "little group of k_i" **Example: band representation of 1D lattice with inversion symmetry**

Coset decomposition for inversion: $Ig_1 = \{E | \mathbf{0}\}g_1 I$

$$I|\phi_{\mathbf{R}}\rangle = |\phi_{-\mathbf{R}}\rangle\rho(I)$$

Since there are no other sites, this is exactly U

Conclusion: for s orbitals, U = (1), and for p orbitals, U = (-1)

As we asserted yesterday, for s and p orbitals, $U_I = \begin{pmatrix} +1 & \\ & -1 \end{pmatrix}$

To find little group irreps, plug into the character formula:

Character of h={P,**v**} is given by trace:

Tr
$$[V(\mathbf{G})^{-1}U_h] e^{-i(P\mathbf{k})\cdot\mathbf{v}}, P\mathbf{k} = \mathbf{k} + \mathbf{G}$$

Simplifications:

$$V(\mathbf{G}) = \mathbb{I}$$
 because atoms at r=0
 $\mathbf{v} = 0$ because we are only considering inversion

Character table

At both k=0 and k= π , the character is Tr[U_l]=Tr[ρ (I)] For s orbital: Tr[U_l] = +1 \Rightarrow A_g For p orbitals: Tr[U_l] = -1 \Rightarrow A_u Example: band representation of 1D lattice with inversion, atoms at general position

Coset decomposition for inversion:

$$I |\phi_{\mathbf{R},1}\rangle = |\phi_{-\mathbf{R},2}\rangle\rho(E)$$
$$I |\phi_{\mathbf{R},2}\rangle = |\phi_{-\mathbf{R},1}\rangle\rho(E)$$

Conclusion: as we asserted yesterday,

$$U_I = \begin{pmatrix} & 1 \\ 1 & \end{pmatrix}$$

To find little group irreps, plug into the character formula:

Character of h={P,**v**} is given by trace:

Tr
$$[V(\mathbf{G})^{-1}U_h] e^{-i(P\mathbf{k})\cdot\mathbf{v}}, P\mathbf{k} = \mathbf{k} + \mathbf{G}$$

Simplification:

$$V(\mathbf{G}) = \begin{pmatrix} e^{i\mathbf{G}\cdot\mathbf{x}_0} & 0\\ 0 & e^{-i\mathbf{G}\cdot\mathbf{x}_0} \end{pmatrix}$$
$$\operatorname{Tr}\left[V(\mathbf{G})^{-1}U_h\right] = \operatorname{Tr}\begin{pmatrix} 0 & e^{i\mathbf{G}\cdot\mathbf{x}_0}\\ e^{-i\mathbf{G}\cdot\mathbf{x}_0} & 0 \end{pmatrix} = 0$$

Character table

At both k=0 and k= π , the character is 0

2d rep with zero inversion character: $A_g \oplus A_u$

Part 2: Elementary band representations

Refs: "Topological quantum chemistry,"

Bradlyn, Elcoro, Cano, Vergniory, Wang, Felser, Aroyo, Bernevig ArXiv: 1703.02050, Nature 547, 298 – 305 (2017)

"Building blocks of topological quantum chemistry,"

Cano, Bradlyn, Wang, Elcoro, Vergniory, Felser, Aroyo, Bernevig ArXiv: 1709.01935, PRB 97, 035139 (2018)

Secs II and III

Band representations can describe multiple orbitals in different positions

Elementary band reps are the building blocks

<u>Elementary</u> band representations do not decompose into sum of band representations

1. Elementary band reps are induced from irreducible representations of G_q

$$(\rho_1 \oplus \rho_2) \uparrow G = (\rho_1 \uparrow G) \oplus (\rho_2 \uparrow G)$$

2. All EBRs can be induced from representations of maximal site-symmetry groups

 $(\rho \uparrow H) \uparrow G = \rho \uparrow G \qquad K \subset H \subset G$

⇒ Finitely many EBRs

How many EBRs are there?

- This is the process by which we have enumerated all the EBRs that appear on the BCS (modulo exceptions)
- Large but finite number, estimate:

(230 space groups) x (3 max Wyckoff pos.) x (3 irreps) = 2070

 \Rightarrow 10,403 total EBRs

Actual:	no TR	TR
Single-valued irreps (spinless)	3383	3141
Double-valued irreps (spinful)	2263	1616

Decomposition into band representations is not unique

Consider site \mathbf{q} , site-symmetry group $G_{\mathbf{q}}$

Consider site **q**', site-symmetry group G_q,

Let $G_0 = G_q \bigcap G_{q'}$

If there is a site, \mathbf{q}_0 , with site-symmetry group G_0 , then a rep σ of G_0 induces the same band rep as $\sigma^{\uparrow}G_q$ and as $\sigma^{\uparrow}G_{q'}$

$$\sigma \uparrow G = (\sigma \uparrow G_{\mathbf{q}}) \uparrow G = (\sigma \uparrow G_{\mathbf{q}'}) \uparrow G$$

Summary

- Real space symmetry determines a band representation.
- The little co-group irreps of a band representation are completely determined.
- Elementary band representations cannot be written as a sum of other band representations.

Exercises

Compute the band representation in 1d with inversion, atom at q=1/2.

a) What is the site-symmetry group? Hint: it does not contain inversion because inversion takes $\mathbf{q} = 1/2 \rightarrow -1/2$.

b) What are the two irreps of the site-symmetry group?

c) What are the cosets of the space group with respect to the site-symmetry group? How many coset representatives are there? (Does this explain why q=1/2 is called the 1b position?)

d) What is the coset decomposition of hg_{α} , where h = inversion and g_{α} is a coset representative?

e) Given an irrep of the site-symmetry group, write the matrix U in terms of the irrep.

f) Apply the character formula to find the character of inversion at $\mathbf{k}=0$ and $\mathbf{k}=\pi$, for each of the irreps of the site-symmetry group. (Hint: $\mathbf{v}=0$ because inversion is a point group operation. But **G** is different at $\mathbf{k}=0$ and $\mathbf{k}=\pi$. What irrep appears at $\mathbf{k}=0$? $\mathbf{k}=\pi$?

g) Now consider the band rep induced from a sum of both irreps of the site-symmetry group. The little co-group irreps are the sum of those from each band rep individually. How does this sum compare to what we found in the lecture for \mathbf{q} =0? How does it compare to \mathbf{q} = \mathbf{x}_0 , $0 < \mathbf{x}_0 < 1/2$.

h) Explain why the three band representations are the same. Which are elementary?

Exercises, cont.

Band representation for p4mm.

a) For q=(0,0), what is the site-symmetry group? What is $\rho(g)$ for s orbitals? What about p_x and p_y orbitals? Why didn't I ask for p_z orbitals?

b) For q'=(1/2,0), what is the site-symmetry group? What is $\rho(g)$ for s orbitals? What about p_x and p_y orbitals?

c) Use the coset decomposition to compute the matrix representations and little cogroup irreps in each case.

Coset decomposition.

a) Prove that in the coset decomposition: $hg_{\alpha} = \{E | \mathbf{t}\}g_{\beta}g, \mathbf{t} = h\mathbf{q}_{\alpha} - \mathbf{q}_{\beta}$ Hint: act with both sides on the site **q**. Also recall $\mathbf{q}_{\alpha} = g_{\alpha}\mathbf{q}$.

b) Why must **t** be a lattice vector to be a solution to the equation?

c) Recalling, $P\mathbf{R} + \mathbf{t} = \mathbf{R}'$, prove yesterday's equation for the same symmetry operation:

$$P(\mathbf{R} + \mathbf{q}_{\alpha}) + \mathbf{v} = \mathbf{R}' + \mathbf{q}_{\beta}$$