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Part 0: Review of band
representations



BANDREP

http://www.cryst.ehu.es/cgi-bin/cryst/programs/bandrep.pl

e |nput: orbital, Wyckoff position, space group
e Qutput:

e jrreps at high-symmetry points

e compatiblility relations

e band connectivity


http://www.cryst.ehu.es/cgi-bin/cryst/programs/bandrep.pl

3c

Elementary band-representations without time-reversal symmetry of the Double Space

yraphic Server = BANDREP

Example: pbmm .,

Group P6mm (No. 183)

Help

The first row shows the Wyckoff position from which the band representation is induced.
In parentheses, the symbol of the point group isomorphic to the site-symmetry group.

The second row gives the symbol p1G, where p is the irrep of the site-symmetry group.
In parentheses, the dimension of the representation.

The output shows the decomposition of the band representations into irreps of the little groups
of the given k-vectors in the first column.
In parentheses, the dimensions of the representations.

Minimal set of paths and compatibility relations to analyse the connectivity

Show all types of k-vectors

2b(3m)

E{7G(4)

Decomposable

Wyckoff pos. 1a(6mm) 1a(6mm) 1a(6mm) 1a(6mm) 1a(6mm) 1a(6mm)
Band-Rep. ATG(1) A;TG(1) B;TG(1) B,TG(1) E1TG(2) E;TG(2)
Igcel:g:nr:::::rl\e Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable Indecomposable

A:(0,0,1/2) A4(1) Az(1) A4(1) As(1) As(2) As(2)
r:(0,0,0) ry(1) ra(1) F4(1) r3(1) Me(2) Ms(2)
H:(1/3,1/3,1/2) Hq(1) Ha(1) Hz(1) Hq(1) H3(2) H3(2)
K:(1/3,1/3,0) K4(1) K2(1) Ka(1) K4(1) K3(2) K3(2)
L:(1/2,0,1/2) L4(1) L2(1) L4(1) Li(1) L3(1) ® L4(1) L4i(1) © Ly(1)
M:(1/2,0,0) M4(1) Mz(1) My4(1) M3(1) M3(1) @ Myg(1) | M4(1) @ M(1)

Ag(2) @ Aq(2)

g(2) © Mg(2)

Hy(1) ® Hs(1) @ Hg(2)

Ka(1) @ Ks(1) @ Kg(2)

2L5(2)




Compatibility relations constrain connectivity

Compatibility Relations

GM1(1)—LD4(1)
GMo(1)—LD2(1)
GM3(1)—LD4(1)
GMy(1)—LD2o(1)
GM5(2)—LD1(1) @ LD5(1)
GMg(2)—LD4(1) @ LD»(1)

Compatibility Relations

K4(1)—LD4(1)
Ko(1)—LD2(1)

Ka(1)—LD3(1)

Rs(1)-IDa(1)
Kg(2)—LD3(1) @ LD4(1)

GM7(2)—LD3(1) ® LD4(1

GMs(2)>LDa(1) ® LD4(1)
GMg(2)—LD3(1) ® LD4(1)

Compatibility Relations

M4(1)—LD4(1)
Mo(1)—LD2(1)

M3(1)—LD4(1)

k‘l — . 1

Ms(2)—LD3(1) ® LD4(1)

Compatibility Relations

Compatibility Relations

M1(1)—>SM4(1)
M>(1)—SMa(1)
M3(1)—>SMo(1)
Ma(1)—>SM4(1

Ms(2)—>SM3(1) ® SMy(1

GM4(1)—SM4(1)
GM2(1)—SMa(1)
GM3(1)—SM»(1)
GMgy4(1)—SM4(1)
GM5(2)—SM1(1) @ SM2(1)
GMg(2)—-SM1(1) ® SMx(1)
GM7(2)—>SM3(1) ® SMy(1
GMg(2)—SM3(1) ® SMy(1)

GMg(2)—SM3(1) ® SMy(1)




Compatibility relations constrain connectivity

2 possible connectivities for the band rep E1]1G(4)

Connected
K .
5 —_1
M5
K 6 Fg

K, o X e TP

Disconnected

F5 F8 Ml
Z a2
. r

Ko« % 7P

“decomposable” connectivity
indicated in BANDREP

Main point: real space symmetry highly constrains band connectivity




Goals of this lecture

e Given Wyckoff position and orbital, write band rep matrices

e Build a tight-binding model with symmetries



Part 1: Bloch’s theorem

For electrons in a perfect crystal, there is a basis of wavefunctions with the properties:

» Each of these wavefunctions is an energy eigenstate

« Each of these wavefunctions is a Bloch wave, meaning that this wavefunction 1) can be written
in the form

p(r) = e u(r)

where u has the same periodicity as the atomic structure of the crystal.

https://en.wikipedia.org/wiki/Bloch_wave#Proof_of Bloch's_theorem



Proof of Bloch’s theorem
1. define simultaneous eigenstates of H, T

H(I‘—I—R):H(I') R =nie; + noey + nges, n; € Z

Hamiltonian commutes with translations: [H, Tei] =0

Simultaneous eigenstates:

—27Tik7;
Teq;wn,k — C wn,k k = klgl -+ k’QgQ —+ kggg
Hwn,k — En,kwn,k € -85 = 27T5ij

= P x(r — R) =TT T, k(r) = e,

3



Proof of Bloch’s theorem
2. construct real space periodic function

ui(r) = e (r)

u(r + R) = e TRy (r + R)

_ 6—ik-(r+R)€ik-R¢k(r)
= e TPy (r)

— uk(r)

u has periodicity of lattice, not periodicity of BZ

P has periodicity of BZ, not periodicity of lattice



Should we use u or ¢?

* u is the natural way to define the Berry phase

Vkuk Is well-defined and periodic

kak — V(eik'ruk) — eik'r(Vkuk -+ iruk)

|

blows up away from origin

e stay tuned for Barry’s lectures



Part 2: tight-binding model
formalism

Following notes by Yusufaly, Vanderbilt and Coh, available at:

http://www.physics.rutgers.edu/pythtb/ downloads/pythtb-formalism.pdf



http://www.physics.rutgers.edu/pythtb/_downloads/pythtb-formalism.pdf

Tight-binding degrees of freedom

Atoms located at positions: I°,

Each atom has orbitals labelled by j =1, ..., n

PR.a,j(T) = Pa,(r —R —ry)

/TN

unit cell atom  orbital

PR/ ,8,i) = OR,R/ 0,304

assume orthonormality: <¢R,a,j

position operator: <¢R,a,j r|§bR’,5,i> — (R - ra)éR,R’éa,ﬁézj



Tight-binding Hamiltonian

Hai,ﬁj (R) = <¢R’,a,i

H|¢r/+R.8,5) = (P0,0,i| H|PR,3,5)

Translation invariance = only specify atoms/orbitals and R



Two natural choices of Fourier transform

Choice 1: |X10<é’j> — Z‘¢R,a,j>
k

HY; 55 = (Xl HIXE;) = ) e BT 0 Hy, 55(R)
R

Choice 2: Xa, ; g @’0 i)

Hk 1,07 — <X(X’L‘H|Xﬁj> — Z ke RHaz .87 (R)
R

Note: only different if more than one site per cell!



Pros/cons of Fourier transform choices
Choice 2: Hk 1,85 — <Xaz‘H‘Xlﬁ{]> — Z eik.RH@i,ﬁj (R)

Hamiltonian is periodic in Brillouin zone

Choice 1:

HY, 5 = OO HING,) = S e Bratm o (R
R

Hamiltonian is not periodic in Brillouin zone

Pro: Symmetries without translations are k-independent
(will prove)

Since we are mostly concerned with symmetries, we use Choice 1 in these lectures!!!



Choice 2: Periodicity of Hamiltonian

ik'ra

Define diagonal matrix: V(k)az’,ﬁj = 0430 €

k+G 1G-(rg—rg, k . —1 717k
Hygy = 'St g o0 = [V(G) T HV(G)] L, 5

Notes:
H is not periodic in BZ, but
H(k) and H(k+G) have same eigenvalues (of course)



Fourier conventions: analogy to u and

Hamiltonians generate eigenvalue equations: Eigenstates:
E : nk|. k
,530 nkCg!{ Oozi |Xaz>
e %)
~ ~nk|~k
BJC Enkcgi{ E :Con |Xaz>
b ot
“n,k+G  Ank e
Cai — Cm; = BZ periodic, like |
Cn,k—l—G _ e—iG.ra On’-k = not BZ periodic, like u

al

Using Choice 1 instead of Choice 2 is similar to using u instead of

(which we argued earlier was more natural for topological applications)



Example 1: atoms in 1d

1 orbital/site = trivial subscripts: ¥y, =1 =0 ¢ =1

HR = +7) = —t
HR # +£3) =0

H* = Z e BHR) = —t(e™* + e %) = —2tcosk
R

==TI k:O =TT



Example 2: square lattice

0 else

H(R) {t if R =

H* = —2t(cosk, + cosk,)

How to plot 2d spectrum? identify high-symmetry path




Example 3: interpenetrating square lattices

only one orbital/site = i = 1

H4(0) = pa
Hpp(0) = up

Hap(0) = Hap(—2) = Hap(—2 — §) = Hap(—9) = —t’



Example 3: interpenetrating square lattices, cont.

HY , = —2t(cos ky + cosk,) + pia
HE 5 = —2t(cos ky + cos ky)+ 1B

ok — _t/(eik.(0+r3)+€z‘k.(—§;+r3)Jreik.(_:;;_ngrB)+€ik.(_@+r3))

ke Kk,

—4t' cos — cos -2
2 2




Part 3: tight-binding symmetries


http://www.physics.rutgers.edu/pythtb/_downloads/pythtb-formalism.pdf

How do crystal symmetries act on tight-binding states?

g={P|v} r — Pr+v
7N
point group element translation

Action on TB states: g\gme> — [Ug]ﬁj,ai‘¢R’,Bj>

R’, B fixed by spatial rotation: P(R —+ ra) + VvV = R’ + I

U describes orbital rotation = U is independent of R (will prove)



How do crystal symmetries act on Fourier-
transformed TB basis?

glxsi) =Y e BIrglop o)

R
=) e Br)lgp, 5 [Uglsai

R
= P PRI D60 5 [Uglgj i
R

= > PR 600 5 [Ug)g) 0
R

= X5 [Uglgj,aie” Y

Proof (promised earlier) that if v=0, then g is k-independent

More generally, g splits into k-independent matrix and k-dependent phase



How does the tight-binding Hamiltonian
transform under symmetries?

Real space: gHg'=H

Momentum space: sz Bj = <Xlo{n‘|H‘Xlﬁ{j> <Xm\gHg_1|X5]>

1
Conclude: Hk iBi = [UgHP kUg_l} o
at,B]

The k-independent matrix U determines symmetry of Hamiltonian
(even in non-symmorphic group!!)



How to find little group irreps

Little group: Gr = {g‘gk =k + G}
In our gauge, Ug does not commute with Hk:
U,HU, ' = H' = V(G) "H*V(G)

Recall: V(k)al,ﬁj — 50{56@3 e’ik-ra

Instead: [V(G)Ug, Hk] = 0

Can simultaneously diagonalize Hk and V(G)Uq4 (not Uy)
Little group characters from eigenvalues of V(G)Ug4e-i(Pk).v
(This must be the case, otherwise little group irreps would be k-independent!!)

Note: G is different for different choices of g



Example 1: 1d chain with inversion, s and p orbitals

o — oL —oC —oC —oC —o¢

What is U? inversion does not mix orbitals = diagonal

U=0, = HX=0¢.H %o,

E [ Ms 0 —ts 0 0 —itsp .
H _<O ,Up)+< 0 —tp>COSk+(itSp 0 sink + ...

onsite nearest neighbor, nearest neighbor,
same orbital different orbital orbital

How to implement in real space?

HSS(pp) (j) — HSS(pp)(_i) HSP@) — _HSp(_f)



Compute inversion eigenvalues
oL — 65 — o5 — o — e o

1
HF:5(//118_//Lp_tS_I_tp)O-Z—I_(...)]I_I_"'
1
Y = 21—+t — )+ (- )4

Ug =0 Vik) =1

Inversion eigenvalues determined by sign of: (fts — ftp) £ (—ts + tp)

Four possibilities for inversion eigenvalue of lower band: ++, +-, -+, --
Upper band always opposite of lower: --, -+, +-, ++

Can understand from band representations
Four possibilities are four different EBRs



Example 2: pg

FEFEFEFE
(Non-symmorphic) group generated by {my | V2 0} L “Frieze”
. : rou

What is U? glide exchanges orbitals Uy =0y o'kao'x — H”

k k
Hk:/LI[—|—(tCOS§—|—t/SiH§)O'x—|—...

* both sites have same chemical potentiall
e two types of nearest neighbor hopping

Spectrum:t=1t =1

/




Compute eigenvalues

| /\
k k
H” = pl + (tcos 5 + ¢’ sin 5)03j

+i -1 +i

-t I ]!
Band crossing is required!!

Recall: Little group characters from eigenvalues of V(G)Ug4e-i(Pk.v, where Pk = k+G

Uy =0y

G=0=V
e—i(Pk)v

At k, matrix form of glide:

VR

0) =1
ik /2

ik /2

O €

|
™



Exercises

1. Inversion symmetry in 1d with atoms at the general position. Consider a 1d
chain of atoms with two sites per cell at x = +Xo, invariant under inversion symmetry.

a) What is the matrix form for inversion symmetry?

b) Construct a tight-binding model.

c) Show that the tight-binding Hamiltonian is identical to that for s and p orbitals at
x=0 after a basis transformation.

d) What happens when xo = 1/47

2. Glide with time-reversal. Consider pg, generated by the glide, {my|1/2, 0}.

a) Why is the term cos(k)ox forbidden? Hint: what is V(G)?

b) How does time reversal change the band structure? (Time-reversal is implemented
by complex conjugation and k — -k.)

c) Bonus: what if SOC is included? Hint: see “Hourglass fermions,” by Wang,
Alexandradinata, Cava, Bernevig, Arxiv:1602.05585, Nature 532,189-194 (2016)

3. Rectangular lattice. Consider a rectangular lattice of s orbitals, without C4 symmetry.
a) What extra terms can be added to the Hamiltonian with C4 symmetry?
b) Along which path should the spectrum be plotted to see all high-symmetry lines?

4. k-independence. Prove that when there is only one atom (perhaps with many orbitals)

in the unit cell, then there exists a choice of origin such that the little group irreps are k-
independent.



