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Part 0: Review of band 
representations



BANDREP

• Input: orbital, Wyckoff position, space group


• Output: 


• irreps at high-symmetry points


• compatibility relations


• band connectivity

http://www.cryst.ehu.es/cgi-bin/cryst/programs/bandrep.pl

http://www.cryst.ehu.es/cgi-bin/cryst/programs/bandrep.pl


Example: p6mm

…



Compatibility relations constrain connectivity



Compatibility relations constrain connectivity

Topological   insulatorTopological semi-metal Topological   insulatorTopological semi-metal

“decomposable” connectivity  
indicated in BANDREP

Connected

2 possible connectivities for the band rep 

Disconnected

Main point: real space symmetry highly constrains band connectivity



Goals of this lecture

• Given Wyckoff position and orbital, write band rep matrices


• Build a tight-binding model with symmetries



Part 1: Bloch’s theorem

https://en.wikipedia.org/wiki/Bloch_wave#Proof_of_Bloch's_theorem



Proof of Bloch’s theorem 
1. define simultaneous eigenstates of H, T

H(r+R) = H(r) R = n1e1 + n2e2 + n3e3, ni 2 Z

Hamiltonian commutes with translations: [H,Tei ] = 0

Simultaneous eigenstates:

Tei n,k = e�2⇡iki n,k

H n,k = En,k n,k

k ⌘ k1g1 + k2g2 + k3g3

ei · gj = 2⇡�ij

)  n,k(r�R) = Tn1
e1

Tn2
e2

Tn3
e3
 n,k(r) = e�ik·R n,k



Proof of Bloch’s theorem 
2. construct real space periodic function

uk(r) = e�ik·r k(r)

uk(r+R) = e�ik·(r+R) k(r+R)

= e�ik·(r+R)eik·R k(r)

= e�ik·r k(r)

= uk(r)

u has periodicity of lattice, not periodicity of BZ 

ψ has periodicity of BZ, not periodicity of lattice



Should we use u or ψ?

• u is the natural way to define the Berry phase

rkuk

rk k = r(eik·ruk) = eik·r(rkuk + iruk)

is well-defined and periodic

blows up away from origin

• stay tuned for Barry’s lectures



Part 2: tight-binding model 
formalism

Following notes by Yusufaly, Vanderbilt and Coh, available at:

http://www.physics.rutgers.edu/pythtb/_downloads/pythtb-formalism.pdf

http://www.physics.rutgers.edu/pythtb/_downloads/pythtb-formalism.pdf


Tight-binding degrees of freedom

Atoms located at positions: r↵

Each atom has orbitals labelled by j = 1, …, n

�R,↵,j(r) = '↵,j(r�R� r↵)

atom orbitalunit cell

assume orthonormality: h�R,↵,j |�R0,�,ii = �R,R0�↵,��ij

position operator: h�R,↵,j |r|�R0,�,ii = (R+ r↵)�R,R0�↵,��ij



Tight-binding Hamiltonian

H↵i,�j(R) ⌘ h�R0,↵,i|H|�R0+R,�,ji = h�0,↵,i|H|�R,�,ji

Translation invariance ⇒ only specify atoms/orbitals and R



Two natural choices of Fourier transform

Choice 1: 

|�̃k
↵,ji =

X

k

eik·R|�R,↵,jiChoice 2: 

H̃k
↵i,�j ⌘ h�̃k

↵i|H|�̃k
�ji =

X

R

eik·RH↵i,�j(R)

Note: only different if more than one site per cell!

|�k
↵,ji =

X

k

eik·(R+r↵)|�R,↵,ji

Hk
↵i,�j ⌘ h�k

↵i|H|�k
�ji =

X

R

eik·(R�r↵+r�)H↵i,�j(R)



Pros/cons of Fourier transform choices

Choice 1: 

H̃k
↵i,�j ⌘ h�̃k

↵i|H|�̃k
�ji =

X

R

eik·RH↵i,�j(R)

Hamiltonian is periodic in Brillouin zone

Choice 2: 

Hamiltonian is not periodic in Brillouin zone

Pro: Symmetries without translations are k-independent 
(will prove)

Since we are mostly concerned with symmetries, we use Choice 1 in these lectures!!!

Hk
↵i,�j ⌘ h�k

↵i|H|�k
�ji =

X

R

eik·(R�r↵+r�)H↵i,�j(R)



Choice 2: Periodicity of Hamiltonian

V (k)↵i,�j = �↵��ije
ik·r↵Define diagonal matrix: 

Hk+G
↵i,�j = eiG·(r��r↵)Hk

↵i,�j =
⇥
V (G)�1HkV (G)

⇤
↵i,�j

 Notes: 
H is not periodic in BZ, but  

H(k) and H(k+G) have same eigenvalues (of course)



Fourier conventions: analogy to u and ψ
Hamiltonians generate eigenvalue equations:

Hk
↵i,�jC

nk
�j = EnkC

nk
↵i

H̃k
↵i,�jC̃

nk
�j = EnkC̃

nk
↵i

X

↵i

Cnk
↵i |�k

↵ii

X

↵i

C̃nk
↵i |�̃k

↵ii

Eigenstates:

C̃n,k+G
↵i = C̃n,k

↵i

Cn,k+G
↵i = e�iG·r↵Cn,k

↵i

⇒ BZ periodic, like ψ

⇒ not BZ periodic, like u

Using Choice 1 instead of Choice 2 is similar to using u instead of ψ 

(which we argued earlier was more natural for topological applications)



Example 1: atoms in 1d

H(R = ±x̂) = �t

H(R 6= ±x̂) = 0

Hk
=

X

R

eik·RH(R) = �t(eik·x̂ + e�ik·x̂
) = �2t cos k

r↵ = r1 = 0 i = 11 orbital/site ⇒ trivial subscripts: 

k=0 k=πk=-π
Γ X



Example 2: square lattice

H(R) =

(
�t if R = ±x̂,±ŷ

0 else

How to plot 2d spectrum? identify high-symmetry path

Hk
= �2t(cos k

x

+ cos k
y

)

Γ X

M

Γ X M Γ



t

t t
t

t’

t’t’

t’

Example 3: interpenetrating square lattices

A

B

rA = (0, 0)

rB = (1/2, 1/2)

only one orbital/site ⇒ i = 1

label by R, not rAB

HAB(0) = HAB(�x̂) = HAB(�x̂� ŷ) = HAB(�ŷ) = �t0

HAA(±x̂) = HAA(±ŷ) = HBB(±x̂) = HBB(±ŷ) = �t

HAA(0) = µA

HBB(0) = µB



Hk
AA

= �2t(cos k
x

+ cos k
y

) + µ
A

Hk
BB

= �2t(cos k
x

+ cos k
y

) + µ
B

Hk
AB = �t0(eik·(0+rB) + eik·(�x̂+rB) + eik·(�x̂�ŷ+rB) + eik·(�ŷ+rB))

= �t0(eik·(
1
2 ,

1
2 ) + eik·(�

1
2 ,

1
2 ) + eik·(�

1
2 ,�

1
2 ) + eik·(

1
2 ,�

1
2 ))

= �4t0 cos
k
x

2

cos

k
y

2

Example 3: interpenetrating square lattices, cont.

Γ X M Γ



Part 3: tight-binding symmetries

 

http://www.physics.rutgers.edu/pythtb/_downloads/pythtb-formalism.pdf


How do crystal symmetries act on tight-binding states?

g = {P |v} r ! Pr+ v

point group element translation

P (R+ r↵) + v = R0 + r�R’, β fixed by spatial rotation:

U describes orbital rotation ⇒ U is independent of R (will prove)

Action on TB states: g|�R,↵ii = [Ug]�j,↵i|�R0,�ji



How do crystal symmetries act on Fourier-
transformed TB basis? 

Proof (promised earlier) that if v=0, then g is k-independent

More generally, g splits into k-independent matrix and k-dependent phase

g|�k
↵ii =

X

R

eik·(R+r↵)g|�R,↵ii

=
X

R

eik·(R+r↵)|�R0,�ji[Ug]�j,↵i

=
X

R

ei(Pk)·(P (R+r↵))|�R0,�ji[Ug]�j,↵i

=
X

R

ei(Pk)·(R0+r��v)|�R0,�ji[Ug]�j,↵i

= |�Pk
�j i[Ug]�j,↵ie

�i(Pk)·v



How does the tight-binding Hamiltonian 
transform under symmetries?

Real space:   gHg-1 = H 

Momentum space: Hk
↵i,�j ⌘ h�k

↵i|H|�k
�ji = h�k

↵i|gHg�1|�k
�ji

Expand RHS: = h�k
↵i|g|�k0

�l ih�k0

�l |H|�k00

�mih�k00

�m|g�1|�k
�ji

=
�
[Ug]↵i,�l�Pk0,ke

�ik·v�
⇣
�k0,k00Hk0

�l,�m

⌘⇣
[U�1

g ]�m,�j�P�1k,k00e�ik00·(�P�1v)
⌘

Hk
↵i,�j =

h
UgH

P�1kU�1
g

i

↵i,�j
Conclude:

The k-independent matrix U determines symmetry of Hamiltonian 
(even in non-symmorphic group!!)



How to find little group irreps

Little group: Gk = {g|gk = k+G}

In our gauge, Ug does not commute with Hk:

UgH
kU�1

g = Hk+G = V (G)�1HkV (G)

V (k)↵i,�j = �↵��ije
ik·r↵Recall: 

[V (G)Ug, H
k] = 0Instead:

Can simultaneously diagonalize Hk and V(G)Ug (not Ug)

(This must be the case, otherwise little group irreps would be k-independent!!)

Little group characters from eigenvalues of V(G)Uge-i(Pk).v

Note: G is different for different choices of g



Example 1: 1d chain with inversion, s and p orbitals 

What is U?    inversion does not mix orbitals ⇒ diagonal

U = �z ) Hk = �zH
�k�z

onsite nearest neighbor,

same orbital

nearest neighbor,

different orbital orbital

Hk
=

✓
µs 0

0 µp

◆
+

✓
�ts 0

0 �tp

◆
cos k +

✓
0 �itsp

itsp 0

◆
sin k + . . .

How to implement in real space?

Hsp(x̂) = �Hsp(�x̂)Hss(pp)(x̂) = Hss(pp)(�x̂)



Example 1: 1d chain with inversion, s and p orbitals 
Compute inversion eigenvalues

H� =
1

2
(µs � µp � ts + tp)�z + (· · · )I+ . . .

HX =
1

2
(µs � µp + ts � tp)�z + (· · · )I+ . . .

Ug = �z V (k) = I

Four possibilities for inversion eigenvalue of lower band: ++, +-, -+, --  
Upper band always opposite of lower: --, -+, +-, ++ 

Can understand from band representations 
Four possibilities are four different EBRs

Inversion eigenvalues determined by sign of: (µs � µp)± (�ts + tp)



Example 2: pg

(Non-symmorphic) group generated by {my | ½ 0} “Frieze” 
group

What is U?  glide exchanges orbitals U
g

= �
x

r1 = 0, r2 = 1/2

�
x

Hk�
x

= Hk

Hk

= µI+ (t cos
k

2

+ t0 sin
k

2

)�
x

+ . . .

• both sites have same chemical potential!

• two types of nearest neighbor hopping

πΓ-π

Spectrum: t = t’ = 1



Example 2: pg 
Compute eigenvalues

U
g

= �
x

Hk

= µI+ (t cos
k

2

+ t0 sin
k

2

)�
x

+ . . .

πΓ-π

e�i(Pk)v = e�ik/2

Recall: Little group characters from eigenvalues of V(G)Uge-i(Pk).v, where Pk = k+G

G = 0 ) V (0) = I
�
x

e�ik/2

At k, matrix form of glide:

+1

-1

-i

+i+i

-i

Band crossing is required!!



Exercises

2. Glide with time-reversal. Consider pg, generated by the glide, {my|1/2, 0}.

  a) Why is the term cos(k)σx forbidden? Hint: what is V(G)?

  b) How does time reversal change the band structure? (Time-reversal is implemented 
by complex conjugation and k → -k.) 

  c) Bonus: what if SOC is included? Hint: see “Hourglass fermions,” by Wang, 
Alexandradinata, Cava, Bernevig, Arxiv:1602.05585, Nature 532,189-194 (2016)

1. Inversion symmetry in 1d with atoms at the general position. Consider a 1d 
chain of atoms with two sites per cell at x = ±x0, invariant under inversion symmetry. 
  a) What is the matrix form for inversion symmetry?

  b) Construct a tight-binding model.

  c) Show that the tight-binding Hamiltonian is identical to that for s and p orbitals at 
x=0 after a basis transformation.

  d) What happens when x0 = 1/4? 

3. Rectangular lattice. Consider a rectangular lattice of s orbitals, without C4 symmetry.

 a) What extra terms can be added to the Hamiltonian with C4 symmetry?

 b) Along which path should the spectrum be plotted to see all high-symmetry lines?

4. k-independence. Prove that when there is only one atom (perhaps with many orbitals) 
in the unit cell, then there exists a choice of origin such that the little group irreps are k-
independent.


